LESSON 2.1 Notes

GOAL

Find square roots and compare real numbers.

Vocabulary

If $b^2 = a$ then b is a square root of a. All positive real numbers have two square roots, a positive square root (or *principle* square root) and a negative square root.

A square root is written with the radical symbol $\sqrt{}$. The number or expression inside the radical symbol is the **radicand**.

The square of an integer is called a **perfect square**.

An **irrational number** is a number that cannot be written as a quotient of two integers.

The set of real numbers is the set of all rational and irrational numbers.

EXAMPLE 1 Find square roots

Evaluate the expression.

a.
$$\sqrt{400}$$

b. $-\sqrt{16}$

c. $\pm \sqrt{81}$

Solution_

 $\sqrt{400} = 20$ The positive square root of 400 is 20.

- $-\sqrt{16} = -4$ The negative square root of 16 is -4.
- $\pm\sqrt{81} = \pm$ The positive and negative square roots of 81 are 9 9 and -9.

Exercises for Example 1

Evaluate the expression.

1.
$$\sqrt{289}$$

2. $-\sqrt{100}$
3. $\pm\sqrt{441}$

EXAMPLE 2 Approximate a square root

Approximate $\sqrt{52}$ to the nearest integer

Solution

The greatest perfect square less than 52 is 49. The least perfect square greater than 52 is 64.

49 < 52 < 64	Write a compound inequality that compares 52 to both 49 and 64.			
$\sqrt{49} < \sqrt{52} < \sqrt{64}$	Take positive square root of each number.			
7<\sqrt{52}<8	Find square root of each perfect square.			
Because of 52 is closet to 49 then to 64	4, $\sqrt{52}$ is closer			

Exercises for Example 2

Approximate the square root to the nearest integer.

to 7 then to 8. So, $\sqrt{52}$ is about 7.

4. √75
5. √240
$6 - \sqrt{120}$

EXAMPLE 3 Classify numbers

Tell whether each of the following numbers is a real number, a rational number, an irrational number, an integer, or a whole number: $\sqrt{64}$, $\sqrt{17}$, $-\sqrt{36}$

Numbe	r Real number?	Rational number?	Irrational number?	Integer?	Whole number?
$\sqrt{64}$	Yes	Yes	No	Yes	Yes
$\sqrt{17}$	Yes	No	Yes	No	No
-\sqrt{36}	Yes	Yes	No	Yes	No

EXAMPLE 4 Graph and order real numbers

Order the numbers from least to greatest: $\sqrt{16}$, $\frac{3}{5}$, -2.2 , $-\sqrt{12}$, $\sqrt{6}$

Solution

Begin by graphing the numbers on a number line.

Read the numbers from left to right: $\sqrt{12}$, -2.2, $\sqrt{6}$, $\sqrt{16}$, $\frac{3}{5}$

Exercises for Examples 3 and 4

Tell whether each number in the list is a real number, a rational number, an irrational number, an integer, or a whole number. Then order the numbers from least to greatest.

7.
$$\sqrt{10}$$
, $-\frac{1}{2}$, $-\sqrt{8}$, -2, 1.3
8. $-\sqrt{3}$, $-\frac{1}{3}$, $-\sqrt{11}$, -2.5, 4

Answer Key

Lesson 2.1

Study Guide

1. 17 2. -10 3. ± 21 4. 9 5. 15 6. -4 7. real number $\frac{1}{10}$, $-\frac{1}{2}$, $-\sqrt{8}$, -2, 13; rational number $\frac{1}{2}$, -2, 1.3; irrational number $\frac{10}{10}$, $-\sqrt{8}$; integer: -2, whole number: note , -2, $-\frac{1}{2}$, 1.3, $\sqrt{10}$ 8. real number: $\sqrt{3}$, $-\frac{1}{3}$, $-\sqrt{11}$, -2.5, 4; rational number $\frac{1}{3}$: , -2.5, 4; irrational number $\sqrt{3}$, $-\frac{1}{3}$, $-\sqrt{11}$; integer; 4, whole number $\sqrt{4}$, 1, -25, $\sqrt{3}$, $-\frac{1}{3}$, 4