LESSON 2.1
 Notes

GOAL

Find square roots and compare real numbers.

Vocabulary

If $b^{2}=a$ then b is a square root of a. All positive real numbers have two square roots, a positive square root (or principle square root) and a negative square root.

A square root is written with the radical symbol $\sqrt{ }$. The number or expression inside the radical symbol is the radicand.

The square of an integer is called a perfect square.
An irrational number is a number that cannot be written as a quotient of two integers.

The set of real numbers is the set of all rational and irrational numbers.

EXAMPLE 1

Find square roots

Evaluate the expression.

a. $\sqrt{400}$
b. $-\sqrt{16}$
c. $\pm \sqrt{81}$

Solution

$$
\begin{array}{rll}
\sqrt{400} & =20 & \text { The positive square root of } 400 \text { is } 20 . \\
-\sqrt{16} & =-4 & \text { The negative square root of } 16 \text { is }-4 . \\
\pm \sqrt{81} & = \pm & \\
& \text { The positive and negative square roots of } 81 \text { are } 9 \\
& \text { and }-9 .
\end{array}
$$

Exercises for Example 1

Evaluate the expression.

1. $\sqrt{289}$
2. $-\sqrt{100}$
3. $\pm \sqrt{441}$

EXAMPLE 2

Approximate a square root

Approximate $\sqrt{52}$ to the nearest integer

Solution

The greatest perfect square less than 52 is 49 . The least perfect square greater than 52 is 64 .

$$
\begin{aligned}
& 49<52<64 \\
& \sqrt{49}<\sqrt{52}<\sqrt{64} \\
& 7<\sqrt{52}<8
\end{aligned}
$$

Write a compound inequality that compares 52 to both 49 and 64 . Take positive square root of each number.

Find square root of each perfect square.

Because of 52 is closet to 49 then to 64 , $\sqrt{52}$ is closer to 7 then to 8 . So, $\sqrt{52}$ is about 7 .

Exercises for Example 2
Approximate the square root to the nearest integer.
4. $\sqrt{75}$
5. 240

6- $-\sqrt{120}$

EXAMPLE 3

Classify numbers

Tell whether each of the following numbers is a real number, a rational number, an irrational number, an integer, or a whole number: $\sqrt{64}, \sqrt{17},-\sqrt{36}$

Number	Real number?	Rational number?	Irrational number?	Integer?	Whole number?
$\sqrt{64}$	Yes	Yes	No	Yes	Yes
$\sqrt{17}$	Yes	No	Yes	No	No
$-\sqrt{36}$	Yes	Yes	No	Yes	No

EXAMPLE 4

Graph and order real numbers
Order the numbers from least to greatest: $\sqrt{16}, \frac{3}{5}, \mathbf{- 2 . 2},-\sqrt{12}, \sqrt{6}$
Solution
Begin by graphing the numbers on a number line.

Read the numbers from left to right: $\sqrt{12},-2.2, \sqrt{6}, \sqrt{16}, \frac{3}{5}$

Exercises for Examples 3 and 4

Tell whether each number in the list is a real number, a rational number, an irrational number, an integer, or a whole number. Then order the numbers from least to greatest.
7. $\sqrt{10},-\frac{1}{2},,^{-\sqrt{8}},-2,1.3$
8. $-\sqrt{3},-\frac{1}{3},-\sqrt{11},-2.5,4$

Answer Key

Lesson 2.1

Study Guide

1. 17
2. -10
3. ± 21
4. 9
5. 15
6. real number! $\sqrt{10},-\frac{1}{2},-\sqrt{8},-2,13$; rational numbēren $,-2,1.3$; irrational number: $\sqrt{10},-\sqrt{8}$; integer: -2 , whole number: nolise,-2 , $-\frac{1}{2}, 1.3, \sqrt{10}$
7. real number: $\sqrt{3},-\frac{1}{3},-\sqrt{11},-2.5,4$; rational numberr. $\quad,-2.5,4$; irrational numben $\sqrt{3},-\sqrt{11}$; integer; 4, whole number: $\overline{44 \cdot 1},-25, \sqrt{3}$, $-\frac{1}{3}, 4$
