LESSON 2.8 Notes

GOAL Write equations in function form and rewrite formulas

Vocabulary

An equation in *x* and *y* is written in **function form** when the dependent variable *y* is isolated on one side of the equation.

A literal equation is an equation that contains two or more variables.

EXAMPLE 1 Rewrite an equation in function form

Write 9x - 4y = 8 in function form

Solution

To write an equation in function form, <u>MEANS</u> solve the equation for y

9x - 4y = 8	Write original equation.
-4y = 8 - 9x	Subtract $9x$ from each side.
$y = -2 + \frac{9}{4}x$	Divide each side by - 4. Simplify
The equation $y = -\frac{9}{4}$	x - 2 is written in function form.

EXAMPLE 2 Solve a literal equation

The formula for the volume of a rectangular prism is V = lwh. Solve the formula for *l*.

Solution

V = lwh	Write original equation.
$\frac{v}{wh} = \frac{lwh}{wh}$	Assume $w \neq 0$ and $h \neq 0$. Divide each side by <i>wh</i> .
$\frac{v}{wh} = l$	Simplify.

The rewritten equation is $\frac{v}{wh} = l$.

Exercises for Examples 1 and 2

Write the equation in function form

- 1. 7x + y = 122. 3y - 9x = 21
- 3. 5y 2x = 15

Solve the literal equation

4.
$$I = Prt$$
 for *P*
5. $A = \frac{1}{2} (b_1 + b_2)h$ for b_2

EXAMPLE 3 Solve and use a geometric formula

The area A of a triangle is given by the form $\frac{1}{\underline{u}} = bh$ where b is the base and h is the height

- **a.** Solve the formula for the base *b*.
- **b.** Use the rewritten formula to find the base of the triangle shown, which has an area of 106.8 square inches.

Solution

a. Solve the formula for b.

$A = \frac{1}{2}bh$	Write original formula.
2A = bh	Multiply each side by 2
$\frac{2A}{h} = b$	Divide each side by <i>h</i> .

Substitute 106.8 for A and 12 for h in the rewritten formula.

$$b = \frac{2A}{h}$$
 Write rewritten formula.

$$b = \frac{2(106.8)}{12}$$
 Substitute 106.8 for A and 12
for h

$$b = 17.8$$
 Simplify.

The base of the triangle is 17.8 inches.

Exercises for Example 3

The surface area *S* of a sphere is given by the formula $S = 4\pi r^2$ where *r* is the radius of the sphere

- 6. Solve the formula for *r*.
- 7. Use the rewritten formula from Exercise 6 to find *r* when S = 314 square meters. Use 3.14 for π .

Answer Key

Lesson 2.8

Study Guide

1.
$$y = -7x + 12$$

2. $y = 3x + 7$
3. $y = \frac{2}{5}x + 3$
4. $\frac{I}{rt} = P$
5. $\frac{2A}{h} - b_1 = b_2$
6. $r = \sqrt{\frac{S}{4\pi}}$

7. 5 m