LESSON 2.8

Notes

GOAL

Write equations in function form and rewrite formulas

Vocabulary

An equation in x and y is written in function form when the dependent variable y is isolated on one side of the equation.

A literal equation is an equation that contains two or more variables.

EXAMPLE 1

Rewrite an equation in function form

Write $9 x-4 y=8$ in function form

Solution

To write an equation in function form, MEANS solve the equation for \boldsymbol{y}

$$
\begin{aligned}
9 x-4 y=8 & \text { Write original equation. } \\
-4 y=8-9 x & \text { Subtract } 9 x \text { from each } \text { si } \\
y=-2+\frac{9}{4} \mathrm{x} & \begin{array}{l}
\text { Divide each side by }-4 . \\
\text { Simplify }
\end{array}
\end{aligned}
$$

The equation $y=\frac{9}{4} x-2$ is written in function form.

EXAMPLE 2

Solve a literal equation

The formula for the volume of a rectangular prism is $V=l w h$. Solve the formula for l.

Solution

$V=l w h \quad$ Write original equation.
$\frac{v}{w h}=\frac{l w h}{w h} \quad$ Assume $w \neq 0$ and $h \neq 0$. Divide each side by $w h$.
$\frac{v}{w h}=l \quad$ Simplify.

The rewritten equation is $\frac{v}{w h}=l$.

Exercises for Examples 1 and 2

Write the equation in function form

1. $7 x+y=12$
2. $3 y-9 x=21$
3. $5 y-2 x=15$

Solve the literal equation
4. $I=P r t$ for P
5. $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$ for b_{2}

EXAMPLE 3

Solve and use a geometric formula
The area A of a triangle is given by the formü̆la $A=\quad b h$ where b is the base and h is the height

a. Solve the formula for the base b.
b. Use the rewritten formula to find the base of the triangle shown, which has an area of 106.8 square inches.

Solution

a. Solve the formula for b.

$$
\begin{array}{ll}
A=\frac{1}{2} b h & \begin{array}{l}
\text { Write original } \\
\text { formula. }
\end{array} \\
2 A=b h & \begin{array}{l}
\text { Multiply each side by } \\
2
\end{array} \\
\frac{2 A}{h}=b & \text { Divide each side by } h .
\end{array}
$$

Substitute 106.8 for A and 12 for h in the rewritten formula.

$$
\begin{aligned}
& b=\frac{2 A}{h} \quad \text { Write rewritten formula. } \\
& b=\frac{2(106.8)}{12} \\
& \begin{array}{l}
\text { Substitute } 106.8 \text { for } A \text { and } 12 \\
b=17.8 \quad
\end{array} \\
& \text { Simplify. }
\end{aligned}
$$

The base of the triangle is 17.8 inches.

Exercises for Example 3

The surface area S of a sphere is given by the formula $S=4 \pi r^{2}$ where r is the radius of the sphere
6. Solve the formula for r.
7. Use the rewritten formula from Exercise 6 to find r when $S=314$ square meters. Use 3.14 for π.

Answer Key

Lesson 2.8

Study Guide

1. $y=-7 x+12$
2. $y=3 x+7$
3. $y=\frac{2}{5} x+3$
4. $\frac{I}{r t}=P$
5. $\frac{2 A}{h}-b_{1}=b_{2}$
6. $r=\sqrt{\frac{S}{4 \pi}}$
7. 5 m
