Notes
 LESSON 3.1

GOAL

Identify and plot points in a coordinate plane.

Vocabulary

The coordinate plane can be divided into four regions called quadrants, labeled I, II, III, and IV.

Key Concept

When the x-axis and y-axis are extended to include negative values, the coordinate plane can be divided into four quadrants. Points are plotted in a coordinate plane by first moving right or left (right if x-coordinate is positive, left if x-coordinate is negative) on the x-axis from the origin and then up or down (up if the y-coordinate is positive, down if the y-coordinate is negative) from the x-axis.

Common Student Errors

- Switching x - and y-coordinates or x - and y-axes Example:

Tip Graph the coordinates alphabetically
Graph: $(-2,5)$ (x comes before y).

EXAMPLE 1

Name points in a coordinate plane

Give the coordinates of the point.

a. A
b. B

Solution

a. Point A is 2 units to the right of the origin and 3 units down. So, the x-coordinate is 2 , and the y-coordinate is -3 . The coordinates are $(2,-3)$.
b. Point B is 3 units to the left of the origin and 2 units up. So, the x-coordinate is -3 , and the y-coordinate is 2 . The coordinates are $(-3,2)$.

Exercises for Example 1

Use the coordinate plane in Example 1 to give the coordinates of the point.
1 C
2 D
$3 E$

EXAMPLE 2
Plot points in a coordinate plane
Plot the point in a coordinate plane. Describe the location of the point.
a. $A(1,-3)$
b. $B(-2,-2)$
c. $C(-3,0)$

Solution

a. Begin at the origin. First move 1 unit to y the right, then 3 units down. Point A is in Quadrant IV.
b. Begin at the origin. First move 2 units to the left, then 2 units down. Point B is in Quadrant III.
c. Begin at the origin. First move 3 units to the left. Point C is on the x-axis.

Exercises for Example 2

Plot the points in a coordinate plane. Describe the location of the point.
4. $A(3,5)$
5. $B(-1,-4)$
6. $C(4,-2)$

EXAMPLE 3
Graph a function
Graph the function $y=\frac{1}{2} x+2$ with domain $-6,-4,-2,0$, and 2 . Then identify the range of the function.

Solution

STEP 1 Make a table by substituting the domain values into the function.

\boldsymbol{x}	$\boldsymbol{y}=\frac{\mathbf{1}}{\mathbf{2}} \quad \boldsymbol{x}+\mathbf{2}$
-6	$y=\frac{1}{2}(-6)+2=-1$
-4	$y=\frac{1}{2}(-4)+2=0$
-2	$y=\frac{1}{2} \quad(-2)+2=1$
0	$y=\frac{1}{2} \quad(0)+252$
2	$y=\frac{1}{2} \quad(2)+2=3$

STEP 2 List the ordered pairs: $(-6,-1),(-4,0),(-2,1),(0,2)$, and $(2,3)$. Then graph the function.

STEP 3 Identify the range. The range consists of the y-values from the table: $-1,0,1,2$, and 3.

Exercise for Example 3

7. Graph the function $y=-2 x+3$ with domain $-2,-1,0,1$, and 2 . Then identify the range of the function.

Answer Key
Lesson 3.1
Study Guide

1. $(-3,-4)$
2. $(3,3)$
3. $(0,0)$

4-6

4. Quadrant I
5. Quadrant III
6. Quadrant IV
7.

range: $7,5,3,1$ and -1

