# LESSON 3.4 Notes

## GOAL

Find the slope of a line and interpret slope as a rate of change.

## Vocabulary

The **slope** of a non vertical line is the ratio of the vertical change (the *rise*) to the horizontal change (the *run*) between any two points on a line.

A rate of change. Compares a change in one quantity to a change in another quantity

## **Key Concept**

The slope m of a non-vertical line is the ratio of the vertical change in y (the rise) to the horizontal

change in x (the run) between any two points on the line. The slope is positive if the line rises to the

right and negative if it falls to the right. In real-world data, slope is seen as a rate of change.

## **Common Student Errors**

• Not keeping the order of the *x*- and *y*-coordinates consistent

**Tip** Label the points before using them.

Example: Find the slope of the line that passes through the points (-4, 1) and (2, 4).

$$\begin{array}{c} \uparrow & \uparrow \\ \text{Point 1} & \text{Point 2} \end{array} \\ \text{So, } \frac{4-1}{2-(-4)} = \frac{3}{6} = \frac{1}{2} \text{, not } \frac{4-1}{-4-2} = \frac{3}{-6} = -\frac{1}{2} \end{array}$$

### EXAMPLE 1 Find a positive slope

# Find the slope of the line shown.

## Solution

Let  $(x_1, y_1) = (-2, 0)$  and  $(x_2, y_2) = (3, 3)$ .

$$m = \frac{y_2 - y_1}{x_{2-} x_1}$$
 Write formula for slope  
$$= \frac{3-0}{3-(-2)}$$
 Substitute  
$$= \frac{3}{5}$$
 Simplify



### EXAMPLE 2 Find a negative slope

# Find the slope of the line shown.

### Solution

Let  $(x_1, y_1) = (4, -2)$  and  $(x_2, y_2) = (-2, 6)$ .

$$m = \frac{y_2 - y_1}{x_{2-} x_1}$$
 Write formula for slope  
=  $\frac{6 - (-2)}{-2 - 4}$  Substitute

$$=\frac{8}{-6}=-\frac{4}{3}$$
 Simplify



The line falls from left to right. The slope is negative.

# Exercises for Examples 1 and 2

### Find the slope of the line that passes through the points.

- **1.** (-4, -1) and (5, 9)
- **2.** (-2, 5) and (-7, 8)

### Find the slope of the line shown.

Let  $(x_1, y_1) = (-4, -2)$  and  $(x_2, y_2) = (2, -2)$ .

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Write formula for slope  
$$= \frac{-2 - (-2)}{2 - (-4)}$$
 Substitute  
$$= \frac{0}{6} = 0$$
 Simplify

| <br>(1, 4) |
|------------|
| (1, -3)    |

#### EXAMPLE 4 Find the slope of a vertical line

#### Find the slope of the line shown.

Let  $(x_1, y_1) = (1, 4)$  and  $(x_2, y_2) = (1, -3)$ .

| $m = \frac{y_2 - y_1}{x_2 - x_1}$ | Write formula for slope       |  |  |
|-----------------------------------|-------------------------------|--|--|
| $=\frac{-3-4}{1-1}$               | Substitute                    |  |  |
| $=$ $\frac{1}{\sqrt{0}}$          | Division by zero is undefined |  |  |

### EXAMPLE 5 Find a rate of change

**Water loss** The table shows the amount of water evaporating from a swimming pool on a hot day. Find the rate of change in gallons with respect to time. Time (hours)

| Time (hours)       | 2   | 6    | 12 |
|--------------------|-----|------|----|
| Gallons evaporated | 4.5 | 13.5 | 27 |

### Solution

Rate of Change =  $\frac{\text{change in gallons}}{\text{change in time}} = \frac{13.5 - 4.5}{6 - 2} = \frac{9}{4}$ 

The rate of change in gallons is  $\frac{9}{4}$  gallons, or 2.25 gallons per hour.

## Exercises for Examples 3, 4, and 5

### Find the slope of the line that passes through the points.

- **3.** (-8, 0) and (3, 0)
- **4.** (5, -8) and (5, 4)
- 5. Find the rate of change in calories burned with respect to time.

| Time (minutes)  | 40  | 60  | 0    |
|-----------------|-----|-----|------|
| Calories burned | 500 | 750 | 1000 |

# Answer Key

Lesson 3.4

# Study Guide

- **1.**  $\frac{10}{9}$ **2.**  $-\frac{3}{5}$ **3.** 0
- 4. undefined
- **5.** 12.5 calories per minute