LESSON 3.4
 Notes

GOAL

Find the slope of a line and interpret slope as a rate of change.

Vocabulary

The slope of a non vertical line is the ratio of the vertical change (the rise) to the horizontal change (the run) between any two points on a line.

A rate of change. Compares a change in one quantity to a change in another quantity

Key Concept

The slope m of a non-vertical line is the ratio of the vertical change in y (the rise) to the horizontal
change in x (the run) between any two points on the line. The slope is positive if the line rises to the
right and negative if it falls to the right. In real-world data, slope is seen as a rate of change.

Common Student Errors

- Not keeping the order of the x - and y-coordinates consistent

Tip Label the points before using them.

Example: Find the slope of the line that passes through the points $(-4,1)$ and $(2,4)$.
$\begin{array}{cc}\uparrow & \uparrow \\ \text { Point } 1 & \text { Point } 2\end{array}$
So, $\frac{4-1}{2-(-4)}=\frac{3}{6}=\frac{1}{2}$, not $\frac{4-1}{-4-2}=\frac{3}{-6}=-\frac{1}{2}$.

EXAMPLE 1

Find a positive slope
Find the slope of the line shown.

Solution

Let $\left(x_{1}, y_{1}\right)=(-2,0)$ and $\left(x_{2}, y_{2}\right)=(3,3)$.

$$
\begin{aligned}
m= & \frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Write formula for slope } \\
& =\frac{3-0}{3-(-2)} & & \text { Substitute } \\
& =\frac{3}{5} & & \text { Simplify }
\end{aligned}
$$

EXAMPLE 2

Find a negative slope

Find the slope of the line shown.

Solution

Let $\left(x_{1}, y_{1}\right)=(4,-2)$ and $\left(x_{2}, y_{2}\right)=(-2,6)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Write formula for slope } \\
& =\frac{6-(-2)}{-2-4} & & \text { Substitute } \\
& =\frac{8}{-6}=-\frac{4}{3} & & \text { Simplify }
\end{aligned}
$$

The line falls from left to right. The slope is negative.

Exercises for Examples 1 and 2

Find the slope of the line that passes through the points.

1. $(-4,-1)$ and $(5,9)$
2. $(-2,5)$ and $(-7,8)$

EXAMPLE 3
Find the slope of a horizontal line
Find the slope of the line shown.
Let $\left(x_{1}, y_{1}\right)=(-4,-2)$ and $\left(x_{2}, y_{2}\right)=(2,-2)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Write formula for slope } \\
& =\frac{-2-(-2)}{2-(-4)} & & \text { Substitute } \\
& =\frac{0}{6}=0 & & \text { Simplify }
\end{aligned}
$$

EXAMPLE 4

Find the slope of a vertical line

Find the slope of the line shown.

Let $\left(x_{1}, y_{1}\right)=(1,4)$ and $\left(x_{2}, y_{2}\right)=(1,-3)$.

$$
\begin{array}{rlrl}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Write formula for slope } \\
& =\frac{-3-4}{1-1} & & \text { Substitute } \\
& =\frac{-7}{10} & \text { Division by zero is undefined }
\end{array}
$$

EXAMPLE 5
Find a rate of change
Water loss The table shows the amount of water evaporating from a swimming pool on a hot day. Find the rate of change in gallons with respect to time. Time (hours)

Time (hours)	2	6	12
Gallons evaporated	4.5	13.5	27

Solution

Rate of Change $=\frac{\text { change in gallons }}{\text { change in time }}=\frac{13.5-4.5}{6-2}=\frac{9}{4}$
The rate of change in gallons is $\frac{9}{4}$ gallons, or 2.25 gallons per hour.

Exercises for Examples 3, 4, and 5

Find the slope of the line that passes through the points.
3. $(-8,0)$ and $(3,0)$
4. $(5,-8)$ and $(5,4)$
5. Find the rate of change in calories burned with respect to time.

Time (minutes)	40	60	0
Calories burned	500	750	1000

Answer Key
Lesson 3.4

Study Guide

1. $\frac{10}{9}$
2. $-\frac{3}{5}$
3. 0
4. undefined
5. 12.5 calories per minute
