LESSON 3.5 NOTES

GOAL

Graph linear equations using slope-intercept form.

Vocabulary

A linear equation of the form y = mx + b is written in **slope-intercept form**, where *m* is the slope and *b* is the *y*-intercept of the equation's graph.

Two lines in the same plane are **parallel** if they do not intersect.

Key Concept

The slope-intercept form of a linear equation is y = mx + b where *m* is the slope and *b* is the *y*-intercept

of the graph of the equation. You can use the slope-intercept form to find two points on the graph by first

plotting the point that corresponds to the *y*-intercept and then using the slope to locate a second point.

Common Student Errors

• Misinterpreting the <i>y</i> -intercept when it is negative	Example: $2x + 3y = 29$
Tip Recall the slope-intercept form $y = mx + b$.	3y = -2x - 9
	$y = -\frac{2}{3}x - 3$

So, the *y*-intercept is 3. \boldsymbol{X}

EXAMPLE 1 Identify the slope and y-intercept

Identify the slope and y-intercept of the line with the given equation.

a.
$$y = \frac{1}{4} \quad x - 2$$

b. $-2x + 3y = 9$

Solution

- **a.** The equation is in the form y = mx + b. So, the slope of the line is $\frac{1}{4}$, and the *y*-intercept is -2.
- **b.** Rewrite the equation in slope-intercept form by solving for *y*.

-2x + 3y = 9	Write original equation.
3y = 2x + 9	Add $2x$ to each side.
$y = \frac{2}{3}x + 3$	Divide each side by 3.
•	

The line has a slope of $\frac{2}{3}$ and a y-intercept of 3.

Exercises for Example 1

Identify the slope and y-intercept of the line with the given equation.

- **1.** y = -3x + 7
- **2.** 15x 5y = 10
- **3.** -x 6y = 18

EXAMPLE 2 Graph an equation using slope-intercept form

Graph the equation 4x + y = 3

Solution STEP 1 Rewrite the equation in slope-intercept form. y = -4x + 3

STEP 2 Identify the slope and the y-intercept. m = -4 and b = 3

- **STEP 3 Plot** the point that corresponds to the *y*-intercept, (0, 3).
- **STEP 4 Use** the slope to locate a second point on the line. Draw a line through the two points.

.....

Exercises for Example 2

Graph the equation.

4.
$$y = \frac{3}{4}x - 1$$

5. $y = -x$

Determine which of the lines are parallel: line *a* through (-3, 1) and (-6, 7); line *b* through (-7, -5) and (1, 11); line *c* through (2, 5) and (4, 9)

Solution

Find the slope of each line.

Line a:
$$m = \frac{7-1}{-6-(-3)} = \frac{6}{-3} = -2$$

Line b: $m = \frac{11-(5)}{1-(-7)} = \frac{16}{8} = 2$
Line c: $m = \frac{9-5}{4-2} = \frac{4}{2} = 2$

Line *b* and line *c* have the same slope, so they are parallel.

Exercise for Example 3

6. Determine which of the lines are parallel: line *a* through (5, 3) and (8, 5); line *b* through (-2, 9) and (1, 11); line *c* through (12, 8) and (8, 2).

Answer Key

Lesson 3.5

- **Study Guide 1.** m = -3, b = 7 **2.** m = 3, b = -2

 - **3.** $m = -\frac{1}{6}$, b = -3

