LESSON 3.6 Notes

GOAL

Write and graph direct variation equations.

Vocabulary

Two variables x and y show **direct variation**, provided y = ax and $a \neq 0$. The nonzero number a is called the **constant of variation**, and y is said to vary directly with x.

EXAMPLE 1 Identify direct variation equations

Tell whether the equation represents direct variation. If so, identify the constant of variation.

a. 6x - 3y = 12**b.** -5x + 2y = 0

Solution

To tell whether the equation represents direct variation, try to rewrite the equation in the form y = ax.

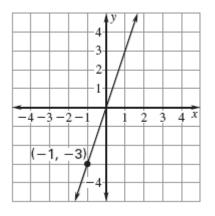
a.	6x - 3y = 12	Write original equation.
	-3y = -6x + 12	Subtract 6 <i>x</i> from each side.
	y = 2x - 4	Divide each side by -3 .

Because the equation 6x - 3y = 12 cannot be rewritten in the form y = ax, it does not represent direct variation.

a

b.	-5x + 2y = 0	Write original equation.
	2y = 5x	Add $5x$ to each side.
	$y = \frac{5}{2} x$	Simplify.

Because the equation -5x + 2y = 0 can be rewritten in the form y = ax, it represents direct variation. The constant of variation is $\frac{5}{2}$


Tell whether the equation represents direct variation. If so, identify the constant of variation.

- **1.** 3x + 5y = 0
- **2.** x + 2y = 1
- **3.** 7x 9y = 0

EXAMPLE 2 Write and use a direct variation equation

The graph of a direct variation equation is shown.

- **a** Write the direct variation equation.
- **b** Find the value of *y* when x = 12.

Solution

a Because y varies directly with x, the equation has the form y = ax. Use the fact that y = 23 when x = 21 to find a

y = ax	Write direct variation equation.
-3 = a(-1)	Substitute.
3 = a	Solve for <i>a</i> .

A direct variation equation that relates x and y is y = 3x.

b When x = 12, y = 3(12) = 36. The value of y when x = 12 is 36.

The table shows the cost C of purchasing tickets for a rock concert.

- **a** Explain why C varies directly with *t*
- **b** Write a direct variation equation 2 \$36 that relates t and C.

Number of tickets, <i>t</i>	Cost, C
2	\$36
3	\$54
5	\$90

Solution

a To explain why *C* varies directly with *t*, compare the ratios $\frac{C}{t}$ for all data pairs $(t, C):\frac{36}{2} = \frac{54}{3} = \frac{90}{5} = 18$. Because the ratios all equal 18, *C* varies directly with *t*.

equal 16, e valles uncerty with *i*.

b A direct variation equation is C = 18t.

Exercises for Examples 2 and 3

- 4 The graph of a direct variation equation passes through the point (5, -2). Write a direct variation equation and find the value of *y* when x = 20.
- **5** What if ? In Example 3, suppose the ticket distributor charges \$5.50 for each transaction, no matter how many tickets are purchased, and \$18 per ticket. Is it reasonable to use a direct variation model for this situation? *Explain*

Answer Key

Lesson 3.6

Study Guide

- **1.** yes; $\frac{3}{5}$ **2.** no
- **3.** yes; $\frac{7}{9}$
- 4. $y = -\frac{2}{5}x$, -8

5. No, the equation cannot be written in y = ax form.