LESSON 3.7
 NOTES

GOAL

Use function notation.

Vocabulary

You have seen linear functions written in the form $y=m x+b$. By naming a function f, you can write it using function notation: $f(x)=m x+\mathrm{b}$.

A family of functions is a group of functions with similar characteristics.
The most basic linear function in the family of all linear functions is called the parent linear function and has the following form: $f(x)=x$.

Key Concept

You can use function notation to write a linear function. Graphs of linear functions can be analyzed and
categorized in terms of their relation to the graph of the parent functions $f(x)=x$.

Common Student Errors

- Misunderstanding the meaning of function notation; Thinking that $f(x)$ really means " f times x "

Tip Stress that $f(x)$ is just another way of writing the y-coordinate.

Example: Evaluate $f(x)=x+3$ when $x=2$.
Student answer:
$f(x)=x+3 \rightarrow 2 f=5 \rightarrow f=2.5 X$
Correct answer:
$f(x)=x+3 \rightarrow f(2)=2+3=5$

EXAMPLE 1

Standardized Test Practice
What is the value of the function $f(x)=-2 x-7$ when $x=-2$?
A. -11
B. -3
C. 3
D. 11

Solution

$$
\begin{aligned}
f(x) & =-2 x-7 & & \text { Write original function. } \\
f(-2) & =-2(-2)-7 & & \text { Substitute }-2 \text { for } x . \\
& =-3 & & \text { Simplify. }
\end{aligned}
$$

The correct answer is B.

Exercises for Example 1

Evaluate the function for the given value of \boldsymbol{x}.

1. $f(x)=0.3 x-1.2 ; 7$
2. $g(x)=-\frac{2}{5} x+\frac{1}{10} ; 4$

EXAMPLE 2
Find an x-value
For the function $f(x)=-3 x+2$, find the value of x so that $f(x)=-13$.

Solution

$$
\begin{aligned}
f(x) & =-3 x+2 & & \text { Write original function. } \\
-13 & =-3 x+2 & & \text { Substitute }-13 \text { for } f(x) . \\
5 & =x & & \text { Solve for } x .
\end{aligned}
$$

When $x=5, f(x)=-13$
\qquad

LESSON 3.7

Study Guide continued

Exercises for Example 2

Find the value of \boldsymbol{x} so that the function has the given value.
3. $g(x)=-\frac{1}{2} x-3 ; 4$
4. $h(x)=5 x-3 ;-13$

EXAMPLE 3

Compare graphs with the graph of $f(x)=x$
Graph the function. Compare the graph with the graph of $f(x)$.
a. $m(x)=\frac{1}{3} x$
b. $n(x)=x-2$

Solution

a. Because the slope of the graph of m is less than the slope of the graph of f, the graph of m rises slower from left to right. The y-intercept for both graphs is 0 , so both lines pass through the origin.

b. Because the graphs of n and f have the same slope, $m=1$, the lines are parallel. Also, the y-intercept of the graph of n is 2 less than the y-intercept of the graph of f.

Exercises for Example 3

5. Graph $g(x)=4 x$. Compare the graph with the graph of $f(x)=x$.

Answer Key

Lesson 3.7

Study Guide

1. 0.9
2. $-1 \frac{1}{2}$
3. -14
4. -2
5.

Because the slope of the graph of g is greater than the slope of the graph of f, the graph of g rises faster from left to right. The y-intercept for both graphs is 0 , so the lines pass through the origin

