LESSON 3.7 NOTES

GOAL

Use function notation.

Vocabulary

You have seen linear functions written in the form y = mx + b. By naming a function *f*, you can write it using **function notation:** f(x) = mx + b.

A family of functions is a group of functions with similar characteristics.

The most basic linear function in the family of all linear functions is called the **parent** linear function and has the following form: f(x) = x.

Key Concept

You can use function notation to write a linear function. Graphs of linear functions can be analyzed and

categorized in terms of their relation to the graph of the parent functions f(x) = x.

Common Student Errors

• Misunderstanding the meaning of function notation; Thinking that *f*(*x*) really means "*f* times *x*"

Tip Stress that f(x) is just another way of writing the *y*-coordinate.

Example: Evaluate f(x) = x + 3 when x = 2. Student answer: $f(x) = x + 3 \rightarrow 2f = 5 \rightarrow f = 2.5$ X

Correct answer: $f(x) = x + 3 \rightarrow f(2) = 2 + 3 = 5 \checkmark$

What is the value of the function f(x) = -2x - 7 when x = -2?

A. −11 **B.** −3

C. 3

D. 11

Solution

f(x) = -2x - 7	Write original function.				
f(-2) = -2(-2) - 7	Substitute -2 for <i>x</i> .				
= -3	Simplify.				

The correct answer is B.

Exercises for Example 1

Evaluate the function for the given value of *x*.

1.
$$f(x) = 0.3x - 1.2; 7$$

2. $g(x) = -\frac{2}{5}x + \frac{1}{10}; 4$

For the function f(x) = -3x + 2, find the value of x so that f(x) = -13.

Solution

f(x) = -3x + 2	Write original function.
-13 = -3x + 2	Substitute -13 for $f(x)$.
5 = x	Solve for <i>x</i> .

When x = 5, f(x) = -13

Name

Date _____

LESSON 3.7 Study Guide continued

Exercises for Example 2

Find the value of *x* so that the function has the given value.

3. $g(x) = -\frac{1}{2}x - 3; 4$ **4.** h(x) = 5x - 3; -13

EXAMPLE 3 Compare graphs with the graph of f(x) = x_____

Graph the function. Compare the graph with the graph of f(x).

a. $m(x) = \frac{1}{3} x$ **b.** n(x) = x - 2

Solution

a. Because the slope of the graph of m is less than the slope of the graph of f, the graph of m rises slower from left to right. The y-intercept for both graphs is 0, so both lines pass through the origin.

		-4- -3- -2- -1-				
	3	-1- -2- 		2	3 2	

b. Because the graphs of *n* and *f* have the same slope, m = 1, the lines are parallel. Also, the *y*-intercept of the graph of *n* is 2 less than the *y*-intercept of the graph of *f*.

Exercises for Example 3

5. Graph g(x) = 4x. Compare the graph with the graph of f(x) = x.

Answer Key

Lesson 3.7

Study Guide

1. 0.92. $-1\frac{1}{2}$ 3. -144. -25. -44. -25. -45. -45. -46. -27. -47.

Because the slope of the graph of g is greater than the slope of the graph of f, the graph of g rises faster from left to right. The y-intercept for both graphs is 0, so the lines pass through the origin