4.2 Use linear equations in slope intercept form

Key Concept

If you know two points on a line, you can calculate the slope *m* using the slope formula, and you can substitute the slope and one ordered pair into the slope-intercept form y = mx + b to find the *y*-intercept *b*. Then you can complete the slope-intercept form of the equation of the line.

Common Student Errors

• Confusing a given point and the *y*-intercept

Tip Stress that the point is only the *y*-intercept if the *x*-value is 0: (0, y)

• Getting stuck trying to find the *y*-intercept or substituting the *x*- and *y*-values incorrectly

Tip Reinforce that the given points are solutions of the equation. Use one color for the *x* and the *x*-value and another color for the *y* and the *y*-value. Visually connect the substitution with arrows.

Example: m = 3 through (2, -5)Student equation: $y = 3x - 5 \times$

A visual like this may help:

$$y = 3x + b$$

$$(2, -1)$$

GOAL Write an equation of a line using points on the line.

EXAMPLE 1 Write an equation given the slope and a point

Write an equation of the line that passes through the point (2, 5) and has a slope of 3.

Solution

- **STEP 1** Identify the slope. The slope is 3.
- **STEP 2** Find the *y*-intercept. Substitute the slope and the coordinates of the given point into y = mx + b. Solve for *b*.

y = mx + b	Write slope-intercept form.
5 = 3(2) + b	Substitute 3 for m , 2 for x , and 5 for y .
-1 = b	Solve for <i>b</i> .

STEP 3 Write an equation of the line.

y = mx + bWrite slope-intercept form.y = 3x - 1Substitute 3 for m, and -1 for b.

4.2 Use linear equations in slope intercept form

EXAMPLE2 Write an equation given two points

Write an equation of the line that passes through (3, 9) and (-2, -1). Solution

STEP 1 Calculate the slope.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 9}{-2 - 3} = \frac{-10}{-5} = 2$$

STEP 2 Find the *y*-intercept. Use the slope and the point (3, 9).

y = mx + b	Write slope-intercept form.
9 = 2(3) + b	Substitute 2 for m , 3 for x , and 9 for y .
3 = b	Solve for <i>b</i> .

STEP 3 Write an equation of the line.

y = mx + b	Write slope-intercept form.
y = 2x + 3	Substitute 2 for <i>m</i> and 3 for <i>b</i> .

Exercises for Examples 1 and 2

Write an equation of the line that passes through the given point and has the given slope.

- **1.** (7, 2); m = 4
- **2.** (9, 15); $m = -\frac{1}{3}$

Write an equation of the line that passes through the two given points.

- **3.** (5, 8), (13, 12)
- **4.** (-6, -7), (-3, 5)

EXAMPLE3 Write a linear function

Write an equation of the linear function with the values f(2) = 3 and f(-3) = 8.

Solution

STEP 1 Calculate the slope. Write f(2) = 3 as (2, 3) and f(-3) = 8 as (-3, 8).

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 3}{-3 - 2} = \frac{5}{-5} = -1$

STEP 2 Find the *y*-intercept. Use the slope and the point (2, 3).

y = mx + bWrite slope-intercept form.3 = -1(2) + bSubstitute -1 for m, 2 for x, and 3 for y.5 = bSolve for b.

STEP 3 Write an equation for the function. Use f(x) = mx + b.

f(x) = -x + 5 Substitute -1 for *m* and 5 for *b*.

Exercises for Example 3

Write an equation for a linear function f that has the given values.