6.1 Solving Systems by GRAPHING

GOAL Graph and solve systems of linear equations.

Vocabulary

A system of linear equations, or simply a linear system, consists of two or more linear equations in the same variables.

A solution of a system of linear equations in two variables is an ordered pair that satisfies each equation in the system.

Common Student Errors

- Not checking solutions

Tip Stress the importance of checking a solution of a system because the graphing method is not completely accurate.

- Graphing linear equations incorrectly

Tip You may want to review how to graph linear equations in standard form and in slope-intercept form.

Having students leave space for a check may help:

Check in Equation 1:
Check in Equation 2:
System: $x+2 y=5$
$2 x-3 y=3$
Graph:

Use the graph to solve the system. Then check your solution algebraically.

$$
\begin{array}{ll}
2 x+y=4 & \text { Equation 1 } \\
3 x-5 y=6 & \text { Equation 2 }
\end{array}
$$

Solution

The lines appear to intersect at the point $(2,0)$.
CHECK Substitute 2 for x and 0 for y in each equation.

Equation 1	Equation 2
$2 x+y=4$	$3 x-5 y=6$
$2(2)+0 \stackrel{?}{=} 4$	$3(2)-5(0) \stackrel{?}{=} 6$
$4+0 \stackrel{?}{=} 4$	$6-0 \stackrel{?}{=} 6$
$4=4 \checkmark$	$6=6 \checkmark$

Because the ordered pair $(2,0)$ is a solution of each equation, it is a solution of the system.

EXAMPLE 2 Use the graph-and-check method
 Solve the linear system: $\quad x-3 y=2 \quad$ Equation 1
 $$
-5 x+y=4 \quad \text { Equation } 2
$$

STEP 1 Graph both equations.

STEP 2 Estimate the point of the intersection. The two lines appear to intersect at $(-1,-1)$.

STEP 3 Check whether $(-1,-1)$ is a solution by substituting -1 for x and -1 for y in each of the original equations.

$$
\begin{array}{r|r}
\text { Equation 1 } & \text { Equation 2 } \\
x-3 y=2 & -5 x+y=4 \\
-1-3(-1) \stackrel{?}{=} 2 & -5(-1)+(-1) \stackrel{?}{=} 4 \\
-1+3 \stackrel{?}{=} 2 & 5-1 \stackrel{?}{=} 4 \\
2=2 \checkmark & 4=4 \checkmark
\end{array}
$$

Because the ordered pair $(-1,-1)$ is a solution of each equation, it is a solution of the system.

EXAMPLE3 Solve a multi-step problem

Delivery Service The Rosebud Flower Shop has a basic delivery charge of $\$ 5$ plus a rate of $\$.25$ per mile. The Beautiful Bouquets Shop has a basic delivery charge of $\$ 7$ plus a rate of $\$.20$ per mile. Determine the number of miles a delivery must be for the charges to be equal.

Solution

STEP 1 Write a linear system. Let x be the number of miles driven and y be the total cost of the delivery.

$$
\begin{array}{ll}
y=5+0.25 x & \text { Equation for Rosebud Flower Shop } \\
y=7+0.20 x & \text { Equation for Beautiful Bouquets Shop }
\end{array}
$$

STEP 2 Graph both equations.
STEP 3 Estimate the point of intersection. The two lines appear to intersect at $(40,15)$.
STEP 4 Check whether $(40,15)$ is a solution.

Equation 1

$y=5+0.25 x$
$15 \stackrel{?}{=} 5+0.25(40)$
$15=15 \checkmark$

Equation 2

$y=7+0.20 x$
$15 \stackrel{?}{=} 7+0.20(40)$
$15=15 \checkmark$

Exercises for Examples 1, 2, and 3

Solve the linear system by graphing.

1. $-3 x+y=4$
$5 x-2 y=-7$
2. $x+\frac{1}{2} y=4$
$5 x+2 y=18$
3. $2 x-6 y=4$
$7 x-4 y=-20$
4. In Example 3, suppose Rosebud Flower Shop increases its basic charge to $\$ 10$, and Beautiful Bouquets raises its basic charge to $\$ 13$. Determine when the costs will be equal.
