## 6.1 Solving Systems by GRAPHING

### **GOAL** Graph and solve systems of linear equations.

# Vocabulary

A **system of linear equations,** or simply a *linear system*, consists of two or more linear equations in the same variables.

A solution of a system of linear equations in two variables is an ordered pair that satisfies each equation in the system.

## **Common Student Errors**

• Not checking solutions

**Tip** Stress the importance of checking a solution of a system because the graphing method is not completely accurate.

• Graphing linear equations incorrectly

**Tip** You may want to review how to graph linear equations in standard form and in slope-intercept form.

Having students leave space for a check may help:

Check in Equation 1:

Check in Equation 2:

System: 
$$x + 2y = 5$$
  
 $2x - 3y = 3$ 



## **EXAMPLE 1** Check the intersection point

Use the graph to solve the system. Then check your solution algebraically.

2x + y = 4 Equation 1

3x - 5y = 6 Equation 2

#### Solution

The lines appear to intersect at the point (2, 0).

*CHECK* Substitute 2 for x and 0 for y in each equation.

| Equation 1                   | Equation 2                      |
|------------------------------|---------------------------------|
| 2x + y = 4                   | 3x - 5y = 6                     |
| $2(2) + 0 \stackrel{?}{=} 4$ | $3(2) - 5(0) \stackrel{?}{=} 6$ |
| $4 + 0 \stackrel{?}{=} 4$    | $6-0\stackrel{?}{=}6$           |
| $4 = 4 \checkmark$           | $6 = 6 \checkmark$              |



Because the ordered pair (2, 0) is a solution of each equation, it is a solution of the system.

# **EXAMPLE2** Use the graph-and-check method

**Solve the linear system:** x - 3y = 2 Equation 1 -5x + y = 4 Equation 2

**STEP 1** Graph both equations.

**STEP 2** Estimate the point of the intersection. The two lines appear to intersect at (-1, -1).



**STEP 3** Check whether (-1, -1) is a solution by substituting -1 for x and -1 for y in each of the original equations.

| Equation 1                     | Equation 2                        |
|--------------------------------|-----------------------------------|
| x - 3y = 2                     | -5x + y = 4                       |
| $-1 - 3(-1) \stackrel{?}{=} 2$ | $-5(-1) + (-1) \stackrel{?}{=} 4$ |
| $-1 + 3 \stackrel{?}{=} 2$     | $5-1 \stackrel{?}{=} 4$           |
| $2 = 2 \checkmark$             | 4 = 4 🗸                           |

Because the ordered pair (-1, -1) is a solution of each equation, it is a solution of the system.

### EXAMPLE 3 Solve a multi-step problem

**Delivery Service** The Rosebud Flower Shop has a basic delivery charge of \$5 plus a rate of \$.25 per mile. The Beautiful Bouquets Shop has a basic delivery charge of \$7 plus a rate of \$.20 per mile. Determine the number of miles a delivery must be for the charges to be equal.

#### Solution

- **STEP 1** Write a linear system. Let *x* be the number of miles driven and *y* be the total cost of the delivery.
  - y = 5 + 0.25x Equation for Rosebud Flower Shop

y = 7 + 0.20x Equation for Beautiful Bouquets Shop

- **STEP 2** Graph both equations.
- **STEP 3** Estimate the point of intersection. The two lines appear to intersect at (40, 15).
- **STEP 4** Check whether (40, 15) is a solution.

Equation 1Equation 2y = 5 + 0.25xy = 7 + 0.20x $15 \stackrel{?}{=} 5 + 0.25(40)$  $15 \stackrel{?}{=} 7 + 0.20(40)$  $15 = 15 \checkmark$  $15 = 15 \checkmark$ 



### Exercises for Examples 1, 2, and 3

#### Solve the linear system by graphing.

| 1. | -3x + y = 4  | 2. | $x + \frac{1}{2}y = 4$ | 3. | 2x - 6y = 4   |
|----|--------------|----|------------------------|----|---------------|
|    | 5x - 2y = -7 |    | 5x + 2y = 18           |    | 7x - 4y = -20 |

**4.** In Example 3, suppose Rosebud Flower Shop increases its basic charge to \$10, and Beautiful Bouquets raises its basic charge to \$13. Determine when the costs will be equal.