6.2 Solving a system by SUBSTITUTION

GOAL Solve systems of linear equations by substitution.

Common Student Errors

- Thinking they must only solve for x or only solve for y

Tip Remind students that when using the substitution method to solve a system it does not matter which variable you solve for first. Demonstrate that whether you solve for x first or y first, you will obtain the same solution. If possible, solve for the variable that has a coefficient of 1 or -1 .

To determine which variable to solve for, suggest students circle the variable in the system that has a coefficient of 1 or -1 .
$3 x+y=2$
$4 x-2 y=1$
$4 x-5 y=7$
$-x+3 y=3$
(x) $+2 y=-3$
$12 x+3 y=-1$

EXAMPLE 1 Use the substitution method

Solve the linear system: $2 x+y=1 \quad$ Equation 1

$$
x+2 y=5 \quad \text { Equation } 2
$$

Solution

STEP 1 Solve Equation 1 for y.

$$
\begin{aligned}
2 x+y & =1 & & \text { Write original Equation } 1 . \\
y & =-2 x+1 & & \text { Subtract } 2 x \text { from each side. }
\end{aligned}
$$

STEP 2 Substitute $-2 x+1$ for y in Equation 2 and solve for x.

$$
\begin{aligned}
x+2 y & =5 & & \text { Write Equation } 2 . \\
x+2(-2 x+1) & =5 & & \text { Substitute }-2 x+1 \text { for } y . \\
x-4 x+2 & =5 & & \text { Distributive property } \\
-3 x+2 & =5 & & \text { Simplify. } \\
-3 x & =3 & & \text { Subtract } 2 \text { from each side. } \\
x & =-1 & & \text { Divide each side by }-3 .
\end{aligned}
$$

STEP 3 Substitute -1 for x in the original Equation 1 to find the value of y.

$$
\begin{aligned}
2 x+y & =1 & & \text { Write original Equation } 1 . \\
2(-1)+y & =1 & & \text { Substitute }-1 \text { for } x . \\
-2+y & =1 & & \text { Simplify. } \\
y & =3 & & \text { Solve for } y .
\end{aligned}
$$

The solution is $(-1,3)$.
CHECK Substitute -1 for x and 3 for y in each of the original equations.

Equation 1
$2 x+y=1$
$2(-1)+3 \stackrel{?}{=} 1$
$1=1 \checkmark$

Equation 2
$x+2 y=5$
$-1+2(3) \stackrel{?}{=} 5$
$5=5 \checkmark$

EXAMPLE 2 Use the substitution method

Solve the linear system: $2 x+5 y=5$

$$
x-4 y=9 \quad \text { Equation } 2
$$

Solution

STEP 1 Solve Equation 2 for x.

$$
\begin{aligned}
x-4 y & =9 & & \text { Write original Equation } 2 . \\
x & =4 y+9 & & \text { Revised Equation } 2
\end{aligned}
$$

STEP 2 Substitute $4 y+9$ for x in Equation 1 and solve for y.

$$
\begin{aligned}
2 x+5 y & =5 & & \text { Write Equation } 1 . \\
2(4 y+9)+5 y & =5 & & \text { Substitute } 4 y+9 \text { for } x . \\
8 y+18+5 y & =5 & & \text { Distributive property } \\
13 y+18 & =5 & & \text { Simplify. } \\
13 y & =-13 & & \text { Subtract } 18 \text { from each side. } \\
y & =-1 & & \text { Divide each side by } 13 .
\end{aligned}
$$

STEP 3 Substitute -1 for y in the revised Equation 2 to find the value of x.

$$
\begin{array}{ll}
x=4 y+9 & \text { Revised Equation } 2 \\
x=4(-1)+9 & \text { Substitute }-1 \text { for } y . \\
x=5 & \text { Simplify. }
\end{array}
$$

The solution is $(5,-1)$.
CHECK Substitute 5 for x and -1 for y in each equation.

Equation 1

$2 x+5 y=5$
$2(5)+5(-1) \stackrel{?}{=} 5$

$$
5=5 \checkmark
$$

Equation 2
$x-4 y=9$
$5-4(-1) \stackrel{?}{=} 9$

Exercises for Examples 1 and 2

Solve the linear system using the substitution method.

1. $x+3 y=-10$
$7 x-5 y=34$
2. $8 x+5 y=6$
$5 x-y=-21$
3. $6 x-7 y=22$
$x-4 y=-2$
4. $6 x+y=26$
$5 x-2 y=-1$
5. $x+3 y=11$
$5 x+6 y=1$
6. $\frac{3}{2} x+y=8$
$4 x-\frac{1}{2} y=15$
