Chp 6.5 Notes

GOAL Identify the number of solutions of a linear system.

Vocabulary

A linear system with no solution is called an **inconsistent system.**

A linear system with infinitely many solutions is called a **dependent** system.

Common Student Errors

 Thinking lines with the same slope means the system has infinitely many solutions

Tip Stress that in order for a system to have infinitely many solutions, both the slopes and *y*-intercepts must be the same.

• Confusing the meanings of false and true statements

Tip Remind students that a true statement means infinitely many solutions and a false statement means no solution.

Example: How many solutions does the system have? Explain.

3x - y = -13x - y = 6

Student response: Infinitely many solutions because the two lines have the same slope.

This word association may help: Associate *false*, with *no solution*. Associate *true for all values*, with *infinitely many solutions*.

EXAMPLE 1 A linear system with no solution

Show that the linear system has no solution.

-5x + 4y = 16 Equation 1 5x - 4y = 8 Equation 2

Solution

Method 1 Graphing

Graph the linear system.

The lines are parallel because they have the same slope but different *y*-intercepts. Parallel lines do not intersect, so the system has no solution.

-5x + 4y = 16

Method 2 Elimination

Add the equations.

5x - 4y = 8 0 = 24 -This is a false statement.

The variables are eliminated and you are left with a false statement regardless of the values of x and y. This tells you that the system has no solution.

EXAMPLE2 A linear system with infinitely many solutions

Show that the linear system has infinitely many solutions.

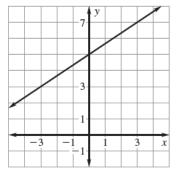
$y = \frac{2}{3}x + 5$	Equation 1
-2x + 3y = 15	Equation 2

Solution

Method 1 Graphing

Graph the linear system.

The equations represent the same line, so any point on the line is a solution. So, the linear system has infinitely many solutions.



Method 2 Substitution

Substitute $\frac{2}{3}x + 5$ for y in Equation 2 and solve for x.

-2x + 3y = 15	Write Equation 2.
$-2x + 3\left(\frac{2}{3}x + 5\right) = 15$	Substitute $\frac{2}{3}x + 5$ for <i>y</i> .
-2x + 2x + 15 = 15	Distributive property
15 = 15	Simplify.

The variables are eliminated and you are left with a statement that is true regardless of the values of x and y. This tells you the system has infinitely many solutions.

Exercises for Examples 1 and 2

Tell whether the linear system has *no solution* or *infinitely many solutions*.

1.	-15x + 3y = 6	2.	-4x + y = 5
	y = 5x + 2		y = 4x + 3

EXAMPLE3 Identify the number of solutions

Without solving the linear system, tell whether the linear system has one solution, no solution, or infinitely many solutions.

a. $7x - 2y = 9$	Equation 1	b. $3x + y = -10$	Equation 1
7x - 2y = -1	Equation 2	-6x - 2y = 20	Equation 2

Solution

a. $y = \frac{7}{2}x - \frac{9}{2}$	Write Equation 1 in slope-intercept form.
$y = \frac{7}{2}x + \frac{1}{2}$	Write Equation 2 in slope-intercept form.

Because the lines have the same slope but different *y*-intercepts, the system has no solution.

b. $y = -3x - 10$	Write Equation 1 in slope-intercept form.
y = -3x - 10	Write Equation 2 in slope-intercept form.

The lines have the same slope and *y*-intercept, so the system has infinitely many solutions.

Exercises for Example 3

Without solving the linear system, tell whether the linear system has one solution, no solution, or infinitely many solutions.

3. $x - 3y = 7$	4. $2x + 3y = 17$	5. $-4x + y = 5$
4x = 12y + 28	3x + 2y = 14	-8x - 14y = -28

laohra 1