6.6 Notes

GOAL

Solve systems of linear inequalities in two variables.

Vocabulary

A **system of linear inequalities** in two variables, or simply a *system of inequalities*, consists of two or more linear inequalities in the same variables.

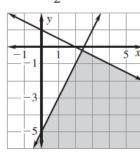
A solution of a system of linear inequalities is an ordered pair that is a solution of each inequality in the system.

The **graph of a system of linear inequalities** is the graph of all solutions of the system.

Common Student Errors

 Incorrectly graphing the intersection of the half-planes

Tip Colored pencils may help distinguish different half-planes. The intersection is the region that has been shaded with every color.


 Forgetting to use a dashed line for an inequality involving < or >

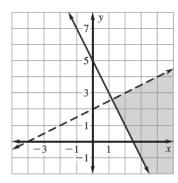
Tip Remind students to use dashed lines for \leq or \geq and solid lines for \leq or \geq .

Example: Graph $y \ge 2x - 5$

$$y < -\frac{1}{2}x + 1.$$

Student graph:

Graph a system of two linear inequalities **EXAMPLE 1**


Graph the system of inequalities.

$$y < \frac{1}{2}x + 2$$
 Inequality 1

$$y \ge -2x + 5$$
 Inequality 2

Solution

Graph both inequalities in the same coordinate plane. The graph of the system is the intersection of the two half-planes, which is shown as the shaded region.

CHECK Choose a point in the shaded region, such as (2, 2). To check this solution, substitute 2 for x and 2 for y into each inequality.

Inequality 1

$$y < \frac{1}{2}x + 2$$

$$y < \frac{1}{2}x + 2$$
 $y \ge -2x + 5$
 $2 < \frac{1}{2}(2) + 2$ $2 \ge 1$ \checkmark

Inequality 2

$$y \ge -2x + 5$$

$$2\stackrel{?}{\geq} -2(2) + 5$$

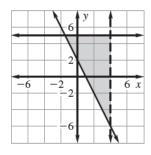
Graph a system of three linear inequalities EXAMPLE 2

Graph the system of inequalities.

$$y \le 5$$

Inequality 1

x < 4


Inequality 2

 $y \ge -2x + 2$

Inequality 3

Solution

Graph all three inequalities in the same coordinate plane. The graph of the system is the triangular region shown.

Exercises for Examples 1 and 2

Graph the system of linear inequalities.

1.
$$y > 3x - 2$$

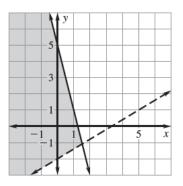
$$y \le \frac{2}{3}x + 1$$

2.
$$\chi$$

$$y > -3$$

$$y \le \frac{3}{4}x + 2$$

3.
$$y > 2$$


$$y \ge 4x - 1$$

Write a system of linear inequalities **EXAMPLE 3**

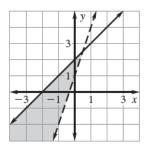
Write a system of inequalities for the shaded region.

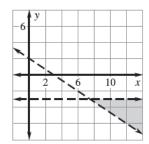
Solution

Inequality 1 One boundary for the shaded region has a slope of -4 and a y-intercept of 5. So, its equation is y = -4x + 5. Because the shaded region is *below* the solid line, the inequality is $y \le -4x + 5$.

Inequality 2 Another boundary line for the shaded region has a slope of $\frac{3}{5}$ and a y-intercept of -2. So, its equation is $y = \frac{3}{5}x - 2$. Because the shaded region is *above* the dashed line, the inequality is $y > \frac{3}{5}x - 2$.

The system of inequalities for the shaded region is: $y \le -4x + 5$


Inequality 1


$$y > \frac{3}{5}x - 2$$
 Inequality 2

Exercises for Example 3

Write a system of inequalities that defines the shaded region.

4.

