8.5 Factoring Trinomials

GOAL Factor trinomials of the form $\boldsymbol{x}^{\mathbf{2}}+b x+c$.

EXAMPLE 1 Factor when b and c are positive

Factor $x^{2}+10 x+24$.

Solution

Find two positive factors of 24 whose sum is 10 . Make an organized list.

The factors 6 and 4 have a sum of 10 , so they are the correct values of p and q.

$$
\left.\begin{array}{l}
x^{2}+10 x+24=(x+6)(x+4) \\
\\
\text { CHECK } \quad(x+6)(x+4)
\end{array}\right)=x^{2}+4 x+6 x+24 \quad n \quad \begin{aligned}
& \text { Multiply binomials. } \\
&
\end{aligned} \begin{aligned}
(x+10 x+24 \checkmark & & \text { Simplify. }
\end{aligned}
$$

Start with 2 parentheses. () ()
What times what is going to give you the first term?
To get the middle and last term

- What times what is going to give you the last term, but when the same 2 numbers are going to get added, will get you the middle term.

EXAMPLE 3 Factor when b is positive and c is negative

Factor $\boldsymbol{k}^{\mathbf{2}}+\mathbf{6 x} \mathbf{- 7}$.

Solution

Because c is negative, p and q must have different signs.

Factors of $\mathbf{7}$	Sum of factors
$-7,1$	$-7+1=-6$
$7,-1$	$7+(-1)=6$
\boldsymbol{x}	

The factors 7 and -1 have a sum of 6 , so they are the correct values of p and q. $k^{2}+6 k-7=(x+7)(x-1)$

Exercises for Example 3

Factor the trinomial.

4. $x^{2}-10 x-11$
5. $y^{2}+2 y-63$
6. $z^{2}-5 z-36$

EXAMPLE 2 Factor when b is negative and \boldsymbol{c} is positive
Factor $w^{2}-10 w+9$.

Solution

Because b is negative and c is positive, p and q must be negative.

Factors of $\mathbf{9}$	Sum of factors
$-9,-1$	$-9+(-1)=-10$
	$-3+(-3)=-6$
\boldsymbol{x}	

The factors -9 and -1 have a sum of -10 , so they are the correct values of p and q.
$w^{2}-10 w+9=(x-9)(x-1)$

Exercises for Examples 1 and 2

Factor the trinomial.

1. $x^{2}+10 x+16$
2. $y^{2}+6 y+5$
3. $z^{2}-7 z+12$

EXAMPLEA Solve a polynomial equation

Solve the equation $h^{2}-4 h=21$.

Solution

$$
\begin{array}{rlrl}
h^{2}-4 h=21 & & \text { Write original equation. } \\
h^{2}-4 h-21 & =0 & & \text { Subtract } 21 \text { from each side. } \\
(h+3)(h-7)=0 & \text { Factor left side. } \\
h+3=0 & \text { or } & h-7=0 & \text { Zero-product property } \\
h=-3 & \text { or } & h=7 & \\
\text { Solve for } h .
\end{array}
$$

The roots of the equation are -3 and 7 .

Exercise for Example 4

7. Solve the equation $x^{2}+30=11 x$.
