9.1 Quadratic Equation

GOAL Graph simple quadratic functions.

Vocabulary

A quadratic function is a nonlinear function that can be written in the standard form $y = ax^2 + bx + c$ where $a \ne 0$.

Every quadratic function has a U-shaped graph called a parabola.

The most basic quadratic function in the family of quadratic functions, called the **parent quadratic function**, is $v = x^2$.

The lowest or highest point on a parabola is the vertex.

The line that passes through the vertex and divides the parabola into two symmetric parts is called the **axis of symmetry.**

Common Student Errors

· Confusing shrinks and stretches

Tip Remind students that for the function $y = ax^2$, a determines how widely the parabola opens. When |a| is small, the parabola opens more widely than when |a| is large.

Confusing vertical translations

Tip Remind students that for the function $y = x^2 + c$, when c > 0, the graph shifts c units up and when c < 0, the graph shifts c units down.

Example: Compare the graphs of $y = 2x^2$ and $y = x^2$.

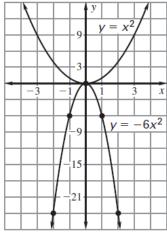
Student response: The graph of $y = 2x^2$ is wider than the graph of $y = x^2$.

The following association may help:

The addition of a positive number c to $y = x^2$ yields a shift up (in the positive direction). Whereas the subtraction of a positive number c yields a shift down (in the negative direction).

Graph $y = -6x^2$. Compare the graph with the graph of $y = x^2$.

Solution


STEP 1 Make a table of values for $y = -6x^2$.

x	-2	-1	0	1	2
y	-24	-6	0	-6	-24

STEP 2 Plot the points from the table.

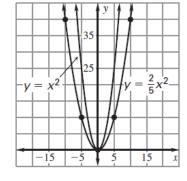
STEP 3 Draw a smooth curve through the points.

STEP 4 Compare the graphs of $y = -6x^2$ and $y = x^2$. Both graphs have the same vertex, (0, 0), and the same axis of symmetry, x = 0. However, the graph of $y = -6x^2$ is narrower than the graph of $y = x^2$ and it opens down. This is because the graph of $y = -6x^2$ is a vertical stretch (by a factor of 6) of the graph of $y = x^2$ and a reflection in the x-axis of the graph of $y = x^2$.

EXAMPLE 2

Graph $y = ax^2$ when |a| < 1

Graph $y = \frac{2}{5}x^2$. Compare the graph with the graph of $y = x^2$.

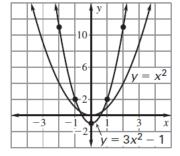

STEP 1 Make a table of values for $y = \frac{2}{5}x^2$.

х	-10	-5	0	5	1	0
y	40	10	0	10	40	

STEP 2 Plot the points from the table.

STEP 3 Draw a smooth curve through the points.

STEP 4 Compare the graphs of $y = \frac{2}{5}x^2$ and $y = x^2$.


Both graphs have the same vertex, (0, 0), and the same axis of symmetry, x = 0. Both graphs open upward. However, the graph of $y = \frac{2}{5}x^2$ is wider than the graph of $y = x^2$. This is because the graph of $y = \frac{2}{5}x^2$ is a vertical shrink (by a factor of $\frac{2}{5}$) of the graph of $y = x^2$.

Graph $y = 3x^2 - 1$. Compare the graph with the graph of $y = x^2$.

STEP 1 Make a table of values for $y = 3x^2 - 1$.

х	-2	-1	0	1	2
y	11	2	-1	2	11

- **STEP 2 Plot** the points from the table.
- **STEP 3 Draw** a smooth curve through the points.
- **STEP 4** Compare the graphs of $y = 3x^2 1$ and

 $y = x^2$. Both graphs open up and have the same axis of symmetry, x = 0. However, the graph of $y = 3x^2 - 1$ is narrower and has a lower vertex than the graph of $y = x^2$. This is because the graph of $y = 3x^2 - 1$ is a vertical stretch (by a factor of 3) and a vertical translation (1 unit down) of the graph of $y = x^2$.

Exercises for Examples 1, 2, and 3

Graph the function. Compare the graph with the graph of $y = x^2$.

1.
$$y = -8x^2$$

2.
$$y = \frac{1}{7}x^2$$

3.
$$y = -\frac{1}{3}x^2$$

4.
$$y = x^2 - 3$$

5.
$$y = \frac{1}{4}x^2 + 2$$

6.
$$y = -\frac{1}{2}x^2 - 1$$