9.2 Graphing the quadratic

GOAL Graph general quadratic functions.

Vocabulary

For $y = ax^2 + bx + c$, the y-coordinate of the vertex is the **minimum** value of the function if a > 0 and the **maximum** value of the function if a < 0.

Steps are the same as 9.1

STEP 1 - Make a table of values.

- Find vertex -x = -b/2a
- The answer you get is also the axis of symentry
- Find 2 numbers greater than the vertex and 2 numbers smaller
- Fill in rest of IN/OUT table

STEP 2 - Plot points on a coordinate plane

STEP 3 – Connect points with smooth curve

STEP 4 - COMPARE IF NEEDED

Common Student Errors

 Overlooking the negative sign when finding the vertex or axis of symmetry

Tip After students sketch the graph of the quadratic function, have them use a graphing calculator to verify their graphs.

 Using the x-coordinate of the vertex as the maximum or minimum value

Tip Remind students that when finding the maximum or minimum *value* of a graph of a quadratic function, they need to *evaluate* the function using the *x*-coordinate of the vertex.

Example: Find the axis of symmetry of the

graph of $y = 2x^2 + 3x - 1$.

Student response: $x = \frac{3}{4}$

Example: Find the minimum or maximum value of the graph

of $f(x) = 2x^2 - 4x + 6$.

Student response: minimum value = 1

EXAMPLE 1

Find the axis of symmetry and the vertex

Consider the function $y = 3x^2 - 18x + 11$.

- **a.** Find the axis of symmetry of the graph of the function.
- **b.** Find the vertex of the graph of the function.

Solution

a. For the function $y = 3x^2 - 18x + 11$, a = 3 and b = -18.

$$x = -\frac{b}{2a} = -\frac{(-18)}{2(3)} = 3$$

Substitute 3 for a and -18 for b. Then simplify.

The axis of symmetry is x = 3.

b. The x-coordinate of the vertex is $-\frac{b}{2a}$, or 3. To find the y-coordinate, substitute 3 for x in the function and find y.

$$y = 3(3)^2 - 18(3) + 11 = -16$$
 Substitute 3 for x. Then simplify.

The vertex is (3, -16).

EXAMPLES

Find the axis of symmetry and the vertex of the graph of the function.

1.
$$y = 5x^2 + 20x + 9$$

2.
$$y = \frac{1}{3}x^2 - 4x - 19$$

EXAMPLE 3

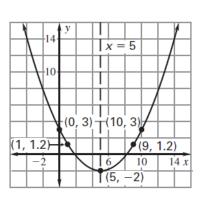
Graph $y = ax^2 + bx + c$

Graph $y = \frac{1}{5}x^2 - 2x + 3$.

Solution

STEP 1 Determine whether the parabola opens up or down. Because a > 0, the parabola opens up.

STEP 2 Find and draw the axis of symmetry:


$$x = -\frac{b}{2a} = -\frac{(-2)}{2\left(\frac{1}{5}\right)} = 5.$$

STEP 3 Find and plot the vertex.

The x-coordinate of the vertex is $-\frac{b}{2a}$, or 5. To find the y-coordinate, substitute 5 for x in the function and simplify.

$$y = \frac{1}{5}(5)^2 - 2(5) + 3 = -2$$

STEP 4 Plot two points. Choose two *x*-values less than the *x*-coordinate of the vertex. Then find the corresponding *y*-values.

X	0	1
y	3	1.2

STEP 5 Reflect the points plotted in Step 4 in the axis of symmetry.

STEP 6 Draw a parabola through the plotted points.

Exercise for Example 3

4. Graph the function $f(x) = x^2 - 4x + 7$. Label the vertex and axis of symmetry.