9.6 Quadratic Equation

GOAL Solve quadratic equations using the quadratic formula.

Vocabulary

By completing the square for the quadratic equation $ax^2 + bx + c = 0$, you can develop a formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, that gives the solutions of any quadratic equation in standard form. This formula is called the **quadratic formula**.

Common Student Errors

· Arithmetic errors when using quadratic formula

Tip Suggest students write out the values of *a*, *b*, and *c* and to always check their solutions algebraically or graphically.

· Forgetting the quadratic formula

Tip To help students memorize the quadratic formula, for each exercise, have them write out the formula before substituting the values for a, b, and c.

Example: Solve $2x^2 - 7x + 4 = 0$.

Student solution:

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(2)(4)}}{2(2)} = 7 \pm \frac{\sqrt{17}}{4}$$

Memorizing this verbal statement may help:

"The opposite of b, plus or minus the square root of b squared minus 4ac, all divided by 2a."

Solve $5x^2 - 3 = 4x$.

Solution

$$5x^2 - 3 = 4x$$

$$5x^2 - 4x - 3 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$=\frac{-(-4)\pm\sqrt{(-4)^2-4(5)(-3)}}{2(5)}$$

$$=\frac{4\pm\sqrt{76}}{10}$$

Write original equation.

Write in standard form.

Quadratic formula

Substitute values in the quadratic formula: a = 5, b = -4, and c = -3.

Simplify.

The solutions are $\frac{4+\sqrt{76}}{10}\approx 1.27$ and $\frac{4-\sqrt{76}}{10}\approx -0.47$.

Exercises for Example 1

Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

1.
$$x^2 - 12x - 14 = 0$$

2.
$$5y^2 - 7 = 11y$$

3.
$$9z^2 + 3z = 5$$