#### cpo science

2000

# **e** Science





### **Chapter Eleven: Heredity**

- 11.1 Traits
- 11.2 Predicting Heredity
- 11.3 Other Patterns of Inheritance



## Investigation 11A Observing Human Traits

How much do traits vary
 in your classroom?

Thumb



Straight

Hitchhiker's



#### **11.1 Traits**

 A trait is a characteristic that an organism can pass on to its offspring.



What type of earlobe did you inherit from your parents?



#### **11.1 Traits**

• Dog breeders select certain traits to produce dogs for different purposes.





### **11.1 Heredity**

- Ancient dog breeders thought that the traits inherited by a dog were a blend of those from the mother and father.
- An organism's **heredity** is the set of traits it receives from its parents.
- Today we know that heredity is not so simple.





### **11.1 Genetics**

- Genetics is the study of heredity.
- A monk named Gregor Mendel was one of the first to experiment with heredity.
- He is often called the "Father of Genetics."





## **11.1 The priest and the pea**

- Mendel carefully studied pea plants in the monastery garden.
- He noticed peas had 2 forms of a trait.
  - Flower color was purple or white
  - Seed shape was smooth or WW
  - Seed color was **Vellow** or green
  - Pod color was green or yellow

#### **Four Traits in Pea Plants**





## 11.1 The priest and the pea



Mendel noticed that a trait from the parent pea plant did not always show up in the offspring (1<sup>st</sup> generation).

Mendel wanted to find out why traits
disappeared and then appeared again.



## **11.1 Pollination**



- Flowering plants reproduce by **pollination**.
- During pollination, **pollen** from the male part of the plant is carried to the female part of the plant called the **ovule**.
- What are 3 ways pollen can be transferred?



#### **11.1 True Breeding Plants**

- For his experiments, Mendel was careful to start out with true breeding parent plants.
- A true-breeding plant with purple flowers will only produce plants with purple flowers.





#### **11.1 Cross-Pollination**

- To better control his experiments, Mendel used a method called **cross-pollination**.
- The parts of the flower that contain pollen (the anthers) were removed so the flower could not self-pollinate.





#### **11.1 Cross-Pollination**

• Then Mendel used pollen from true breeding plants with different traits to produce new combinations of offspring.





### **11.1 First Generation**

- When Mendel crossed true-breeding, purpleflowered plants with true-breeding, whiteflowered plants, the first generation produced all purple-flowered plants!
- Mendel got similar results for the other traits.





#### **11.1 Second Generation**

- When the purpleflowered plants of the offspring self-pollinated, white flowers reappeared in the second generation.
- Mendel was careful.
- How could this happen?

#### First generation



Self pollination

Second generation



3 purple flowers for every 1 white flower

#### **Pea Flower Crosses**





#### 11.1 Ratios

- Mendel compared the number of purple to white flowers by counting them.
- A ratio is a way to compare two numbers.
- Here's how Mendel calculated the ratio of purple flowers to white flowers:





### **11.1 Mendel's Conclusions**

- From his results, Mendel proved that all traits do not blend in a 50/50 ratio.
- Pea plants preferred one trait over another in a ratio of about 3 to 1.
- Mendel concluded that pea traits like flower color were determined by separate units.
- Today, we call those units genes.



### **11.1 Dominant and Recessive Alleles**

- We call the different forms of the same trait **alleles**.
- Mendel showed us that the dominant allele (purple flower) appears in peas more often and seems to "hide" the other form (white flower).
- A recessive allele is the form of a gene that gets hidden if the dominant allele is present.



### **11.1 Dominant and Recessive Alleles**

- If both alleles for flower color get passed to the offspring, then the dominant allele that causes purple flowers hides the recessive allele.
- No white flowers show up in the next generation.





## **11.1 Genotype**

- Mendel used letters to show how the different forms of a gene were passed to the next generation.
- Mendel discovered that a pea plant with purple flowers could have a genotype of either *PP* or *Pp*.
- A pea plant with white flowers could only have a genotype of *pp*.
- An organism's **genotype** shows the alleles of a gene it contains.

| Flower color |          |           |
|--------------|----------|-----------|
| Purple (P)   | Genotype | Phenotype |
|              | PP       | Purple    |
| <b>A</b>     | Pp       | Purple    |
| White (p)    | pp       | White     |





### **11.1 Phenotype**

- An organism's
   phenotype is the
   form of a trait that is
   visible.
- For flower color, a pea plant can show a phenotype of purple or white flowers.

#### purple phenotype



white phenotype



#### **Flower Genotype/Phenotype**

