Chapter Ten: Properties of Matter

- 10.1 Density
$=10.2$ Properties of Solids
- 10.3 Properties of Fluids
= 10.4 Buoyancy

Section 10.1 Learning Goals

- Define density in terms of mass and volume.
- Identify units used to express the density of materials.
- Apply the density formula to solve problems.

Investigation 10A

Density

- Key Question:

How is an object's density related to its volume, mass, and tendency to sink or float?

10.1 Density

- Density describes how much mass is in a given volume of a material.

Steel 7.8 g

Aluminum 2.7 g

Water 1.0 g

Material	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Platinum	21,500	21.5
Lead	11,300	11.3
Steel	7,800	7.8
Titanium	4,500	4.5
Aluminum	2,700	2.7
Glass	2,700	2.7
Granite	2,600	2.6
Concrete	2,300	2.3
Plastic	2,000	2.0
Rubber	1,200	1.2
Liquid water	1,000	1.0
Ice	920	0.92
Ash (wood)	670	0.67
Pine (wood)	440	0.44
Cork	120	0.12
Air (avg.)	0.9	0.0009

- The units used for density depend on whether the substance is solid or liquid.
- For liquids use units of grams per milliliter ($\mathrm{g} /$ mL)
- For solids use density in units of $\mathrm{g} / \mathrm{cm}^{3}$ or kg / m^{3}.

10.1 Density of common materials

- Density is a property of material independent of quantity or shape.

Steel Density

10.1 Density of common materials

- Liquids tend to be less dense than solids of the same material.
- Ex. solder

10.1 Density of common materials
- Water is an exception to this rule.
- The density of solid water (ice) is less than the density of liquid water.

Material	$\left.\mathbf{(k g} / \mathbf{m}^{\mathbf{3}}\right)$	$\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Liquid water	1,000	1.0
Ice	920	0.92

10.1 Determining Density

- To find the density of a material, you need to know the mass and volume of a solid sample of the material.

1. Mass is measured with a balance or scale.
2. Use the displacement method or calculate the volume.

To Find:	Use:
density	$D=\frac{m}{V}$
volume	$V=\frac{m}{D}$
mass	$m=D \times V$

A solid wax candle has a volume of $1,700 \mathrm{~mL}$.

The candle has a mass of $1.5 \mathrm{~kg}(1,500$ g).

What is the density of the candle?

+ $|-|x| \div$ Solving Problems
Calculating Density

1. Looking for:

- ...the density of the candle

2. Given:
" ...mass $=1500 \mathrm{~g}$; volume $=1700 \mathrm{~mL}$
3. Relationship:

- D = m/V

4. Solution:

- $1,500 \mathrm{~g} \div 1,700 \mathrm{~mL}=0.8823529 \mathrm{~g} / \mathrm{mL}$ \# Sig. fig $=.88 \mathrm{~g} / \mathrm{mL}$

