Chapter Fourteen: Changes in Matter

- **•14.1 Chemical Reactions**
- 14.2 Types of Reactions
- **14.3 Energy and Chemical Reactions**
- **14.4 Nuclear Reactions**

Chapter 14.1 Learning Goals

Identify evidence that a chemical change has occurred.

•Relate a balanced chemical equation to the law of conservation of mass.

•Write and balance chemical equations.

14.1 Chemical Reactions

- A chemical reaction is the process of breaking of chemical bonds in one or more substances, and the reforming of new bonds to create new substances.
- When you make pizza, which changes are physical and which are chemical changes?

14.1 Reactants and products

- In chemical reactions, you start with reactants that are combined to make products.
 - The reactants are the starting substances.
 - The products are the new substances which result from the chemical reaction.

14.1 Reaction symbols

symbol	meaning	SS SS S
(s)	substance is a solid	
(1)	substance is a liquid	$2 H_2 O_{(l)} \longrightarrow 2 H_{2(g)} + O_{2(g)}$
(g)	substance is a gas	
(aq)	substance is dissolved in solution (aqueous)	The small symbols in the narentheses (s g ag) next
	iquid (1) (GAS %) (g) Solution	to each chemical formula indicate the <u>phase</u> of each substance in the reaction.

14.1 Balancing equations

The law conservation of mass is applied by <u>balancing</u> the number and type of atoms on either side of the equation.

Type of Atom in Methane Reaction	Total on Reactant Side	Total on Product Side	Balanced?
С	1	1	yes
Н	4	2(× 2) = 4	yes
0	2(× 2) = 4	2 + 1(× 2) = 4	yes

14.1 Balancing equations

Counting atoms is necessary to balance an equation.

14.1 Balancing chemical equations

- •A balanced chemical equation has the <u>same</u> number of each type of atom on the product side and the reactant side.
- To balance the equation, we add another water molecule to the product side and add another oxygen molecule to the reactant side.
- •We can practice balancing equations using CPO periodic table tiles and pencil and paper.

+ - **×** +

Solving Problems

1. Looking for:

...the coefficients for each molecule

2. Given

• ... chemical formulas which show types and no. of atoms

Type of Atom	Reactants	Products	Balanced?
Cu	2	2	yes
S	1	1	yes
0	2	3	no

+-x÷ Solvi

Solving Problems

3. Relationships

- Coefficients can be added in front of any chemical formula in a chemical equation.
- When a coefficient is added in front of a chemical formula, all atoms in that formula are multiplied by that number.
- Use common denominators to help choose coefficients to try.

+-x÷ Solving Problems

4. Solution- Trial and error

$$2\mathrm{Cu}_2\mathrm{S} + 3\mathrm{O}_2 \rightarrow 2\mathrm{Cu}_2\mathrm{O} + 2\mathrm{SO}_2$$

Ato m	Reactants	Products
Cu	2(× 2) = 4	2(× 2) = 4
S	1(× 2) = 2	1(× <mark>2</mark>) = 2
0	2(× 3) = 6	$1(\times 2) + 2(\times 2) = 6$