```
cpo. science
Chapter Four: Motion
    4.1 Speed and Velocity
    4.2 Graphs of Motion
    4.3 Acceleration
```


Section 4.1 Learning Goals

- Distinguish between average speed and instantaneous speed.
- Use the speed formula.
- Distinguish between speed and velocity.

4.1 Position, Speed and Velocity

- The term speed describes how quickly something moves.
= To calculate the speed of a moving object divide the distance it moves by the time it takes to move.

4.1 Position, Speed and Velocity

- The units for speed are distance units over time units.
- This table shows different units commonly used for speed.

Distance	Time	Speed	Abbreviation
meters	seconds	meters per second	m / s
kilometers	hours	kilometers per hour	km / h
centimeters	seconds	centimeters per second	cm / s
miles	hours	miles per hour	mph

4.1 Average speed

- When you divide the total distance of a trip by the time taken you get the average speed.
- On this driving trip around Chicago, the car traveled and average of 100 km/h.

4.1 Instantaneous speed

- A speedometer shows a car's instantaneous speed.
- The instantaneous speed is the actual
 speed an object has at any moment.
+ $|-|x| \div$ Solving Problems
How far do you go if you drive for two hours at a speed of $100 \mathrm{~km} / \mathrm{h}$?

1. Looking for:

- ...distance

2. Given:

- $\quad .$. speed $=100 \mathrm{~km} / \mathrm{h}$ time $=2 \mathrm{~h}$

3. Relationships:

- $\mathrm{d}=\mathrm{v} \times \mathrm{t}$

4. Solution:

- $\mathrm{d}=100 \mathrm{~km} / \mathrm{h} \times 2 \mathrm{~h}=200 \mathrm{~km}=200 \mathrm{~km}$

4.1 Velocity

- We use the term velocity to mean speed with direction.
- Velocity is usually defined as positive when moving forward (to the right from an outside observer), and negative when moving backward (to the left to an outside observer

Negative velocity (crawling to the left)

Distance, Time, and Speed (Velocity)		
Word	rmulas	Equation
speed $=$ distance \div time	velocity $=$ distance \div time	$v=\frac{d}{t}$
distance $=$ speed \times time	distance $=$ velocity \times time	$\mathrm{d}=\mathrm{vt}$
time $=$ distance \div speed	time $=$ distance \div velocity	$t=\frac{d}{v}$

CPO. science

+ $|-|\mathrm{x}| \div$ Solving Problems
A train travels at $100 \mathrm{~km} / \mathrm{h}$ heading east to reach a town in 4 hours. The train then reverses and heads west at $50 \mathrm{~km} / \mathrm{h}$ for 4 hours. What is the train's position now?

1. Looking for:

- ...train's new position

2. Given:
" ...velocity $=+100 \mathrm{~km} / \mathrm{h}$, east ; time $=4 \mathrm{~h}$
" ...velocity $=-50 \mathrm{~km} / \mathrm{h}$, west ; time $=4 \mathrm{~h}$
3. Relationships:

- change in position $=$ velocity \times time

4. Solution:

- $1^{\text {st }}$ change in position:
$(+100 \mathrm{~km} / \mathrm{h}) \times(4 \mathrm{~h})=+400 \mathrm{~km}$, east
- $2^{\text {nd }}$ change in position:
$(-50 \mathrm{~km} / \mathrm{h}) \times(4 \mathrm{~h})=-200 \mathrm{~km}$, west
- Final position:
$(+400 \mathrm{~km})+(-200 \mathrm{~km})=+200 \mathrm{~km}$
The train is 200 km east of where it started.

