Chapter Five: Force

- 5.1 Forces
-5.2 Friction
- 5.3 Forces and Equilibrium

Chapter 5.1 Learning Goals

- Define force as a vector and describe how it is measured.
- Explain how forces are created.
- Compare and contrast types of forces.

5.1 The cause of forces

"A force is a push or pull, or an action that has the ability to change motion.

- Forces can increase or decrease the speed of a moving object.
- Forces can also change the direction in which an object is moving.

5.1 How are forces created?

"Forces are created in many ways.
"For example, your muscles create force when you swing a baseball bat.

5.1 Four Elemental Forces

- All forces in the universe come from only four basic forces.
- Electromagnetic forces are \qquad important to technology.
- Gravity is a universal force.

Strong nuclear force
Electromagnetic force
Weak force
Gravity
Strong nuclear force This force holds the nucleus of an atom together. This force is very strong but only reaches a very short distance.
Electromagnetic force This force acts between positive and negative charges. This force holds atoms together in molecules.
Weak force This force causes some kinds of radioactivity.
Gravity This force causes all masses to attract each other. Your weight comes from the mass of Earth attracting the mass of your body.

5.1 Units of force

-The pound is a unit of force commonly used in the United States.
"For smaller amounts, pounds are divided into ounces (oz.).
-There are 16 ounces in 1 pound.

5.1 Pounds

"When you measure weight in pounds on a postal scale, you are measuring the force of gravity acting on an object.

Pound
One pound (lb) is
about the weight of 0.454 kg of mass

5.1 Newtons

"Although we use pounds all the time in our everyday life, scientists prefer to measure forces in newtons.
-The newton (N) is a metric unit of force.

Newton and Pound Definition

Newton

One newton (N) is the force it takes to change the speed of a 1 kg mass by $1 \mathrm{~m} / \mathrm{s}$ in 1 second

Pound
One pound (lb) is about the weight of 0.454 kg of mass

Time (s)
0.00

1.00

5.1 Unit conversions

-The newton (N) is a smaller unit of force than the pound (lb).
"If one pound of force equals 4.448 newtons, then a 100 lb person weighs 444.8 newtons.

5.1 Drawing a force vector

-The arrow points in the direction of the force.

5.1 Drawing vectors

- The x - and y-axes show the strength of the force in the x and y directions.
- When drawing a force vector to show its strength, you must also choose a scale.

Can you draw the x -axis vector?

5.1 How forces act

"One way forces act is the result of direct contact.
"A contact force is transmitted by matter directly touching other matter such as wind acting to slow a parachute.

5.1 How forces act

-The force of gravity between Earth

Gravitational force
 and Moon appears to be what people once called "action at-a-distance".
-Today we know that the gravitational force is carried from the Earth to the Moon by a force field.

Classify these forces as contact forces or the result of force fields.

Tensional force

Two Categories of Forces

Contact Forces	"At-a-distance" Forces
friction	gravity
normal force	electricity
tension, air resistance, spring	magnetism

5.1 Contact forces from ropes and springs

- Ropes and springs are often used to make and apply forces.
- Ropes are used to transfer forces or change their direction.
= The pulling force carried by a rope is called tension.
"Tension always acts along the direction of the rope.

5.1 Spring forces

-Springs are used to make or control forces.
-The force from a spring always acts to return the spring to its resting shape.

Which of these springs is designed to be stretched? Which is designed to be compressed?

5.1 Gravity

- The force of gravity on an object is called weight.
"At Earth's surface, gravity exerts a force of 9.8 N on every kilogram of mass.

5.1 Weight vs. mass

"Weight and mass are not the same.
-Mass is a fundamental property of matter measured in kilograms (kg).
-Weight is a force measured in newtons (N).
-Weight depends on mass and gravity.

Weight depends on mass and gravity

A l0-kilogram rock has the same mass no matter where it is in the universe. On Earth, the 10 kg . rock weighs 98 N. . On the moon, the same rock only weighs 16 N .

Solving Problems:

Weight and Mass

5.1 Calculating weight

- The weight equation can be rearranged into three forms to calculate weight, mass, or the strength of gravity.

Use. .	if you want to find. .	and you know. . .
$W=m g$	weight (W)	mass (m) and strength of gravity (g)
$m=W / g$	mass (m)	weight (W) and strength of gravity (g)
$g=W / m$	strength of gravity (g)	weight (W) and mass (m)

