Chapter Six: Newton's Laws of Motion

- 6.1 Newton's First Law
- 6.2 Newton's Second Law
- 6.3 Newton's Third Law and

Momentum

Chapter 6.2 Learning Goals

- Define Newton's second law by relating force, mass, and acceleration.
- Apply Newton's second law quantitatively.
- Describe the relationship between net force and acceleration.

6.2 Newton's second law

- Newton's first law tells us that motion cannot change without a net force.
- According to Newton's second law, the amount of acceleration depends on both the force and the mass.

6.2 The newton

- The S.I. unit of force (newton) is defined by the second law.
- A newton is the amount of force needed to

Time (s)

Car accelerates a

7.00

 accelerate a 1 kg object by $1 \mathrm{~m} / \mathrm{s}$.
6.2 Newton's second law

- There are three main ideas related to Newton's Second Law:

1. Acceleration is the result of unbalanced forces.
2. A larger force makes a proportionally larger acceleration.
3. Acceleration is inversely proportional to mass.

6.2 Newton's second law

- Unbalanced forces cause changes in speed, direction, or both.

6.2 Acceleration and force

- The second law says that acceleration is proportional to force.
- If force is increasec or decreased, acceleration will be increased or decreased by the same factor.

What it means to say
"Acceleration is proportional to force."

6.2 Acceleration and direction

- Another important factor of the second law is that the acceleration is always in the same direction as the net force.

6.2 Acceleration and mass

- The greater the mass, the smaller the acceleration for a given force.
- This means acceleration is inversely proportional to mass.

6.2 Acceleration, force and mass
- The acceleration caused by a force is proportional to force and inversely proportional to mass.

```
NEWTON'S SECOND LAW
```

$$
\text { Acceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right)-\boldsymbol{a}=\frac{\boldsymbol{F}-\operatorname{Force}(\mathrm{N})}{\boldsymbol{M}-\operatorname{Mass}(\mathrm{kg})}
$$

6.2 Applying the second law

Keep the following important ideas in mind:

1. The net force is what causes acceleration.
2. If there is no
acceleration, the net force must be zero.
3. If there is acceleration, there must also be a net force.

Usc...want to wind...	know... and you know	
$\mathrm{a}-\frac{\mathrm{F}}{\mathrm{m}}$	accel. (a)	force (F) and mass (m)
$F=m a$	force (F)	acceleration (a) and mass (m)
$\mathrm{m}-\frac{\mathrm{F}}{\mathrm{a}}$	mass (m)	acceleration (a) and force (F)

4. The force unit of newtons is based on kilograms, meters, and seconds.

A car has a mass of 1,000 kilograms. If a net force of $2,000 \mathrm{~N}$ is exerted on the car, what is its acceleration?
5. Looking for:

- ...car's acceleration

2. Given

- ...mass $=1,000 \mathrm{~kg}$; net force $=2,000 \mathrm{~N}$

3. Relationships:

- $\mathrm{a}=\mathrm{F} / \mathrm{m}$

4. Solution:

- $2,000 \mathrm{~N} \div 1,000 \mathrm{~kg}=2 \mathrm{~N} / \mathrm{kg}=2 \mathrm{~m} / \mathrm{s}^{2}$

