Chapter Six: Newton's Laws of Motion

- 6.1 Newton's First Law
- 6.2 Newton's Second Law
- 6.3 Newton's Third Law and

Momentum

Chapter 6.3 Learning Goals

- Describe action-reaction force pairs.
" Explain what happens when objects collide in terms of Newton's third law.
- Apply the law of conservation of momentum when describing the motion of colliding objects.

Investigation 6B
Newton's Third Law

- Key Question:

What happens when equal and opposite forces are exerted on a pair of Energy Cars?

6.3 The Third Law: Action/Reaction

- Newton's Third Law states that every action force creates a reaction force that is equal in strength and opposite in direction.
- There can never be a
Reaction
 single force, alone, without its actionreaction partner.

| CPO. science |
| :--- | :--- |

- When sorting out action and reaction forces it is helpful to examine or draw diagrams.

The action force is on the \qquad , and the reaction force is on the \qquad .

Action Reaction Guidlines

Guidelines for Action-Reaction Forces

Both are always there	
whenever any force appears.	Your foot pushes (action) and the ground pushes back (reaction). They always have the exact same strength.
The force arrows are the same length.	
They always act in opposite directions.	The force arrows point in opposite directions.
Both are real forces always act on different objects. and can cause changes in motion.	Your foot and the ground. You move forward

+ $|-|x| \div$ Solving Problems

A woman with a weight of 500 newtons is sitting on a chair.

Describe one action-reaction

Action: Sitting on a chair pair of forces in this situation.

6.3 Collisions

- Newton's third law tells us that any time two objects hit each other, they exert equal and opposite forces on each other.
- The effect of the force is not always the same.

6.3 Momentum

- Momentum is the mass of a object times its velocity.
- The units for momentum are kilogram-meter per second (kg•m/s).

MOMENTUM

Momentum $(\mathrm{kg}-\mathrm{m} / \mathrm{sec})-D=M M$

6.3 Momentum

- The law of conservation of momentum states that as long as the interacting objects are not influenced by outside forces (like friction) the total amount of momentum
 is constant or does not change.

6.3 Collisions

- When a large truck hits a small car, the forces are equal.
- The small car experiences a much greater change in velocity much more rapidly than the big truck.

Which vehicle ends up with more damage?

+ $|-\mathrm{x}| \div$ Solving Problems
- If an astronaut in space were to drop a 2-kilogram wrench at a speed of $10 \mathrm{~m} / \mathrm{s}$, the astronaut would move backward at what speed?

- The astronaut's mass is 100 kilograms.
+ $|-| \times$ Solving Problems

1. Looking for:

- ... the velocity of the astronaut (backward)

2. Given

-velocity ${ }_{1}=10 \mathrm{~m} / \mathrm{s} ;$ mass $_{1}=2 \mathrm{~kg}$;
- $\quad .$. mass $_{2}=100 \mathrm{~kg}$;

3. Relationships:

- $m_{1} v_{1}=m_{2} v_{2}$

4. Solution

- Draw a free body diagram.
+ $|-\mathrm{x}| \div$ Solving Problems

4. Solution

- The momentum of the wrench and the astronaut also add up to zero AFTER the wrench is thrown.
- $\quad[2 \mathrm{~kg} \times(-10 \mathrm{~m} / \mathrm{s})]+\left[(100 \mathrm{~kg}) \times \mathrm{v}_{2}\right]=0 ; \mathrm{v}_{2}=$ $+20 \div 100=+0.2 \mathrm{~m} / \mathrm{s}$
" The astronaut moves backward at a velocity of $+0.2 \mathrm{~m} / \mathrm{s}$ to the right.

CAREER CONNECTION

Forensic Engineering

- Human bodies are not designed to handle the impact of crashing into a stationary object after traveling through space at the speed of a car.

- The study of how vehicles move before, during, and after a collision is called vehicular kinematics.

