Chapter Seven: Work and Energy

- 7.1 Force, Work, and Machines
= 7.2 Energy and the Conservation of Energy
- 7.3 Efficiency and Power

7.1 Learning Goals

- Identify examples of simple machines.
- Evaluate the mechanical advantage of simple machines.
- Tell what it means to "do work" in a scientific sense.

7.1 Using Machines

- The input includes everything you do to make the machine accomplish a task, like pushing on the bicycle pedals.
- The output is what the machine does for you, like going fast or climbing a steep hill.

7.1 Forces in Machines

- A simple machine is an unpowered mechanical device that accomplishes a task in one movement.

Wheel and axle
Rope and pulleys

Can you spot the simple machines?

- The lever, wheel and axle, rope and pulleys, screw, ramp, and gears are the most common types of simple machines.
- A bicycle is a complex machine made up of simple machines.

7.1 Gears

- A gear is a rotating wheel with teeth that receives or transfers motion and forces to other gears or objects.
- Gears are found in all
 types of complex Can you names some machines.

7.1 The Lever

- A lever includes a stiff structure (the lever) that rotates around a fixed point called the fulcrum.

7.1 The Lever

- Levers are useful because you can arrange the fulcrum and the input arm and output arm to adjust the mechanical advantaqe of the lever.

7.1 Three classes of levers

- Pliers, a wheelbarrow, and your arm each represent one of the three classes of levers.
- Each class of levers is defined by the location of the input and output forces relative to the fulcrum.

Class of Lever	Fulcrum	Force	Length of Arms
$\mathbf{1}^{\text {st }}$	Between input and output forces	Vary in magnitude	Vary in length
$\mathbf{2}^{\text {nd }}$	One end of lever	Output > input	Input > output
$\mathbf{3}^{\text {rd }}$	One end of lever	Input > output	Output > input

7.1 Work and machines

- In science, work is the transfer of energy that results from applying a force over a distance.
- You do 1 joule of work
 if you push with a force of 1 newton for a distance of 1 meter.

7.1 Work

- When thinking about work, remember that work is done by forces that cause movement.
- If nothing moves (distance is zero), then no work is done.

+ $+\mathrm{x} \mid \div$ Solving Problems

How much work is done by a person who pulls a cart with a force of 50 newtons if the cart moves 20 meters in the direction of the force?

+ $|-|x| \div$ Solving Problems

1. Looking for:

- ...work done by person

2. Given:

- ...force $=50 \mathrm{~N}$ (forward);
- ...distance = 20 m

3. Relationships:

- Work = force \times distance

4. Solution

- $50 \mathrm{~N} \times 20 \mathrm{~m}=1,000$ joules.

