

Sound

 At the same temperature and volume, higher pressure contains more molecules than lower pressure.

Intensity and loudness of sound

0 dB	Threshold of human hearing; quietest sound we can hear	
10–15 dB	A quiet whisper 1 meter away	
30–40 dB	Background sound level in a house	
45–55 dB	The noise level in an average restaurant	
65 dB	Ordinary conversation 1 meter away	
70 dB	City traffic	
90 dB	A jackhammer cutting up the street 3 meters away	
100 dB	MP3 player turned to its maximum volume	
110 dB	The front row of a rock concert	
120 dB	The threshold of physical pain from loudness	

Decibels and amplitude

cpo science

Decibels (dB)	Amplitude
0	1
20	10
40	100
60	1,000
80	10,000
100	100,000
120	1,000,000

The amplitude of a sound increases ten times every 20-decibels.

Loudness

Sounds near 2,000
 Hz seem louder than
 sounds of other
 frequencies, even at
 the same decibel
 level.

 According to this curve, a 25 dB sound at 1,000 Hz sounds just as loud as an 40 dB sound at 100 Hz.

The speed of sound

Material	Sound Speed (m/s)
Air	330
Helium	965
Water	1,530
Wood (average)	2,000
Gold	3,240
Steel	5,940

- The speed of sound in normal air is 343 meters per second (660 miles per hour).
- Sound travels through most liquids and solids faster than through air.
- Sound travels about five times faster in water, and about 18 times faster in steel.

The wavelength of sound

The wavelength of sound in air is similar to the size of everyday objects.

Frequency (Hz) Wavelength	Typical Source
20	17 m	rumble of thunder
100	3.4 m	bass guitar
500	68 cm (27")	average male voice
1,000	34 cm (13")	female soprano voice
2,000	17 cm (6.7")	fire truck siren
5,000	6.8 cm (2.7")	highest note on a piano
10,000	3.4 cm (1.3")	whine of a jet turbine
20,000	1.7 cm (0.67")	highest-pitched sound you can hear

Sound protection

Ear plug

 Listening to loud sounds for a long time causes the hairs on the nerves in the cochlea to weaken or break off resulting in permanent damage.

The Doppler effect

- The shift in frequency caused by motion is called the Doppler effect.
- When the object is moving, the frequency will <u>not</u> be the same to all listeners.
- The Doppler effect occurs at speeds below the speed of sound.

Cell Phones: How they work

The process that allows a cell phone to communicate is the same as for a radio or walkie-talkie. All of these devices use electromagnetic waves of within a specific frequency range to send information.

