

Chapter 14 Learning Goals

- Describe the properties of light.
- Explain the relationship between energy and the colors of light.
- Describe waves included in the electromagnetic spectrum in terms of energy, frequency, and wavelength.

Properties of light

 You see book pages because light in the room reflects from the page to your eyes.

 Your eyes and brain use the information carried by the light to make a mental picture.

cpo science making it real

Properties of light

- Light is fast moving energy.
- The speed at which light travels through air is about 300 million meters per second.
- The speed of light is so important in physics that it is given its own symbol, a lower case "c".

Properties of light

Light:

- travels extremely fast and over long distances;
- carries energy and information;
- ✓ has color;

CPO science

- varies in intensity, which means it can be bright or dim;
- travels in straight lines; and
- bounces and bends when it comes in contact with objects.

The electromagnetic spectrum

- Light, like sound and heat, is a form of electromagnetic energy.
- The visible light we see is part of the electromagnetic spectrum.

cpo science

Light is produced by atoms

- Most light is produced by atoms.
- Atoms release light when they have extra energy.
- In order to get light out of an atom you must put some energy into the atom first.
- Adding heat is one way to give atoms extra energy.

Incandescent light

 Making light with heat is called incandescence.

- Atoms in the filament convert electrical energy to heat and then to light.
- Incandescent bulbs are inefficient, but their waste heat can be useful.

Fluorescent light

science

- To make light, fluorescent bulbs use high-voltage electricity to energize atoms of gas in the bulb.
- These atoms release the electrical energy directly as light (not heat), in a process called *fluorescence.*

Color and energy

science

- Color is how we perceive the energy of light.
- When all the colors of the rainbow are combined, we see light without any color.
- We call the combination of all colors white light.

Color and energy

- Compare the hot, blue flame from a gas stove to the orange flame of a match.
- The light from a gas flame is blue (high energy) and the light from a match is redorange (low energy).

Photons and light

- Light energy comes in tiny wave bundles called photons.
- Each photon has its own energy.
- The energy of photons is seen as color.

Wavelength and Frequency of Light

Energy	Color	1 x 10⁻⁰ m	Wavelength (nanometers)	Frequency (THz)
Low	Red		650	462
	Orange		600	500
	Yellow		580	517
	Green		530	566
	Blue		470	638
High	Violet		400	750

What kind of wave is light?

- A sound wave is a oscillation of air.
- A water wave is an oscillation of the surface of water.
- An oscillation of electricity or magnetism creates electromagnetic waves.

Electromagnetic waves

science

- When you move a magnet in your hand back and forth, you make a change in the magnetic field.
- The changing magnetic field causes the other magnet to move.

Electromagnetic waves

In a similar way, the force between two electric charges is carried by an electric field.

Moving this charge...

Electromagnetic waves

 If you could shake the magnet up and down 100 million times per second, you would make FM radio waves at 100 million Hz (100 MHz).

Electromagnetic spectrum

- The entire range of electromagnetic waves, including all possible frequencies, is called the electromagnetic spectrum.
- This spectrum includes visible light and invisible waves:
 - radio wave
 - microwaves
 - infrared light
 - ultraviolet light
 - X-rays
 - gamma rays

Electromagnetic Spectrum

