Chp 20.2

Balancing Equations

Conservation of atoms

The conservation of atoms says that the number of each type of atom on the reactants side of a chemical equation must equal the number of each type of atom on the product side.

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O$$
Reactants Products

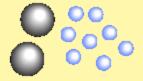
type of atom	total on reactants side	total on products side	balanced?
С	1	1	yes
Н	4	2	no
0	2	3	no

Coefficient

In order to change the number of molecules of a compound, you add a coefficient in front of the chemical formula.

coefficient

tells you how many of each type of reactant or product in the reaction


A coefficient of 2 in front of methane:

subscript

tells you the number of each type of atom in the substance

2CH₄ gives you...

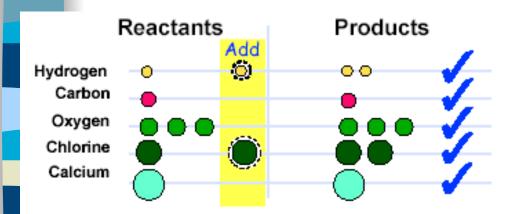
2 carbon atoms and 8 hydrogen atoms

enough carbon and hydrogen atoms to make 2 molecules of methane

IMPORTANT: Remember

- Make sure you have written the correct chemical formula for each reactant.
- The subscripts in the chemical formulas of the reactants and products CANNOT be changed during the process of balancing.
- 3. The coefficients are placed in front of the formulas to make the number of atoms on each side equal.

Balancing Equations


- Count the number of each type of atom on both sides of the reaction.
- Add coefficients to balance everything EXCEPT Hydrogen and Oxygen.
- 3. Balance Hydrogen and Oxygen.

Video on Balancing Equations

Step 1 $HCl + CaCO_3 \longrightarrow CaCl_2 + CO_2 + H_2O$

Step 2

atom	reactants	products
Н	1 X 2 = 2	2
C1	$1 \times 2 = 2$	2
Ca	1	1
С	1	1
О	3	3

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O$$

type of atom	total on reactants side	total on products side	balanced?
С	1	1	yes
Н	4	2	no
0	2	3	no

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

atom	total on reactants side	total on products side
С	1	1
Н	4	2 X 2 = 4
О	2 X 2 = 4	$2 + (2 \times 1) = 4$