

Chapter 21

Types of Reactions

Symbols

The symbols shown in parenthesis in equations tell you about the type of substances.

symbol	meaning
(s)	substance is a solid
(1)	substance is a liquid
(g)	substance is a gas
	substance is
(aq)	dissolved in
	solution (aqueous)

(s) Solid (l) Liquic GAS (g) (aq)Solution

Synthesis Reaction $\bigcirc + \bigcirc \rightarrow \bigcirc - \bigcirc$

In a synthesis reaction two or more substances combine to form a new compound.

$$Fe_{(5)} + O_{2(g)} \longrightarrow Fe_2O_{3(5)}$$

 $A+B \longrightarrow AB$

The general equation is:

Decomposition
Reaction \frown \rightarrow \bigcirc + \bigcirc

In a decomposition reaction a single compound is broken down to produce two or more smaller compounds.

 $2H_2O_{(1)} \longrightarrow 2H_{2^{(g)}} + O_{2^{(g)}}$

The general equation is:

Single-DisplacementReaction $O + O \rightarrow O + O$

In a single-displacement reaction, one element replaces a similar element in a compound.

 $Fe_{(S)} + CuCl_{2}(aq) \longrightarrow FeCl_{2}(aq) + Cu(S)$

The general equation is:

 $AX + B \longrightarrow BX + A$

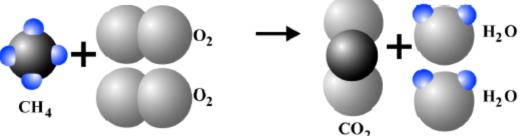
 Where AX is a compound, B is an element, BX is a compound and A is an element

Double-Displacement

Reaction

In a double-displacement reaction, ions from two compounds exchange places to produce two new compounds.

 $Pb(NO)_{3(aq)} + 2KI_{(aq)} \longrightarrow PbI_{2(5)} + 2KNO_{3(aq)}$


The general equation is:

 $AB + CD \longrightarrow AD + CB$

– Where AB and CD are compounds

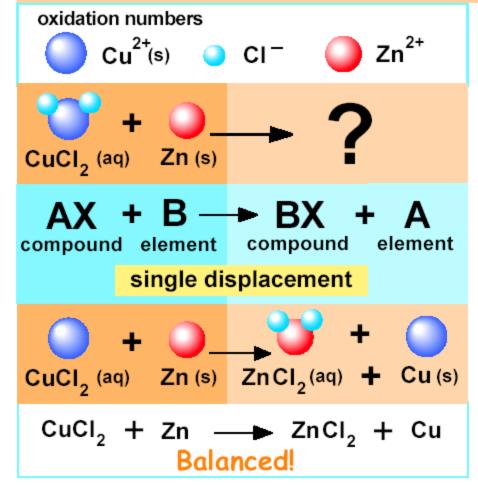
Combustion

In a combustion reaction, a substance combines with oxygen to release energy.

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O_2$$

The general equation is:

Carbon Compound + $O_2(g) \longrightarrow CO_2(g) + H_2O(g)$



The Types of Reactions

Туре	General equation	Example
addition	A + B 🗕 AB	2H ₂ + O ₂ - 2H ₂ O
decomposition	AB —► A + B	2NaHCO ₃ — H ₂ + 2NaCO ₃
single- displacement	AX + B — BX + A	Fe + CuCl ₂
double- displacement	AB + CD - AD + CB	Pb(NO ₃) ₂ = 2KI → PbI ₂ + 2KNO ₃
combustion	carbon + O ₂ CO ₂ + H ₂ O compound + O	C ₆ H ₁₂ O ₆ + 6O ₂ → 6CO ₂ + 6H ₂ O

Predicting the Products of a Reaction

Copper chloride solution reacts with zinc metal to produce what?

- Look up oxidation numbers of elements in compound.
- Write the chemical formulas for the reactants.
- Identify the type of reaction.
- Predict the products. Write chemical formulas for products.
- 5. Balance equation.

Energy in Reactions

- In order for a chemical reaction to take place chemical bonds must be broken and new chemical bonds formed.
- The breaking and production of chemical bonds requires energy.
- Some reactions produce energy, others use energy.

Exothermic and Endothermic Reactions

- In an exothermic reaction energy more energy is produced than used. As a result, the container gets hot and the temperature increases.
- In an *endothermic reaction* more energy is used than is produced. As a result, the container gets cold and the temperature drops.