Chp 5.1

Work and Power

Work

- Work is the force times distance moved in the direction of the force.

$$
\underset{\text { ales) }}{\sim} \underset{\sim}{H} \boldsymbol{T}^{\text {Distance (meters) }}
$$

Unit is Joules (J)

- A force at an angle is not as effective at doing work
- A does 1 J
- B does less than 1 J
- C does no work, since it does not help to move the box

Work by a machine

- Machines can do work
- For example, when a pulley lifts a 10 N weight, a force is applied. As a result of the force, the weight moves a distance of $1 / 2$ meter. Work is done because the force as exerted over some distance

Work Input

- You do work as well
- For example, you pulled on the string with a force of 5 N because the MA=2.
But you had the pull twice as far. The weight moved up only $1 / 2$ meter, but you had to pull 1 meter of string.

Efficiency

- You can never get more work out than you put in
- The efficiency of a machine is the ratio of the work output to the work input.
- An ideal machine would be 100 efficient.
- In real machines, the work output is always less than the work input, so it is always less than 100% efficient.

Power

- Power is the rate at which work is done.

- Units is a watt

Example

- Suppose you are your friend must each lift 105 N boxes from the floor to a 1 meter tall table. You do the task in 5 secs. It takes your (slacker) friend 20 sec to accomplish the same task. Who did more work?

Answer

- You both did the same. You both moved 10 5 N boxes 1 meter.

$$
\mathrm{W}=\mathrm{Fd} \quad(10)(5)(1)=50 \mathrm{~J}
$$

BUT, you had more power because it took you less time.

$$
\begin{array}{ll}
\mathrm{P}=\mathrm{W} / \mathrm{t} & \text { you } \quad 50 / 5=10 \mathrm{watt} \\
& \text { slacker } 50 / 20=2.5 \mathrm{watt}
\end{array}
$$

