Chp 2.2-2.3

Position, Time, and Acceleration

Position vs Distance

- Position means where something is compared with where it started, including direction
- Distance is a length without regard to direction
- If you are 7 km north of school this is your position. If you walk back to the school you position is zero even though you walked 14 km. (7km away plus 7 km back)

If there are turns, the position might be different from the distance traveled

Position vs time graph

- The position vs time graph shows where things are at different times
- Speed is the slope of the position vs time graph

The slope of a graph

Instantaneous and Average Speed

- Does your speed stay the same during a real trip?
 Of course not! You stop at lights, speed up to pass
- Average speed is how fast something moves over a certain distance
 - You travel 50 km in 2 hours average speed = 25 km/hr
- Instantaneous speed is the speed of an object at a specific point in its journey

Acceleration

- Acceleration is the rate of the change of speed
 - Rate of change means the ratio of the amount of change divided by how much time it took to change

Acceleration = <u>Change in speed</u> Change in time

• Units cm/sec²

Example

A car rolls down a ramp and you measure times and distances as shown. Calculate the acceleration in cm/sec².

Types of Acceleration

• There are three different types of acceleration: positive, negative, and zero acceleration

Positive acceleration means the object is speeding up
Negative acceleration means the object is slowing down
Zero acceleration means the object is keeping the same speed

Calculating Acceleration

• Acceleration is the slope of the speed vs time graph

Homework 15

 Match each of the three distance vs time graph with the corresponding speed vs time graph.
 Distance versus time graphs
 Speed versus time graphs

Homework 21

• A swimmer speeds up from 1.9 m/s to 2.6 m/s during the last 20 of a workout. What is the swimmer's acceleration during this time interval?