Chp 2.2-2.3

Position, Time, and Acceleration

Position vs Distance

- Position means where something is compared with where it started, including direction
- Distance is a length without regard to direction
- If you are 7 km north of school this is your position. If you walk back to the school you position is zero even though you walked 14 km . (7 km away plus 7 km back)

If there are turns, the position might be different from the distance traveled

Position vs time graph

- The position vs time graph shows where things are at different times
- Speed is the slope of the position vs time graph

The slope of a graph

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{10}{5}=2.0
$$

Instantaneous and Average Speed

- Does your speed stay the same during a real trip?
- Of course not! You stop at lights, speed up to pass
- Average speed is how fast something moves over a certain distance
- You travel 50 km in 2 hours
average speed $=25 \mathrm{~km} / \mathrm{hr}$
- Instantaneous speed is the speed of an object at a specific point in its journey

Acceleration

- Acceleration is the rate of the change of speed
- Rate of change means the ratio of the amount of change divided by how much time it took to change

$$
\text { Acceleration }=\frac{\text { Change in speed }}{\text { Change in time }}
$$

- Units $\mathrm{cm} / \mathrm{sec}^{2}$

Example

A car rolls down a ramp and you measure times and distances as shown. Calculate the acceleration in $\mathrm{cm} / \mathrm{sec}^{2}$.

Change in speed
$150 \mathrm{~cm} / \mathrm{sec}$

- $50 \mathrm{~cm} / \mathrm{sec}$
$=100 \mathrm{~cm} / \mathrm{sec}$

Change in time 0.60 sec

- 0.10 sec

$$
=0.50 \mathrm{sec}
$$

$$
\begin{aligned}
\text { Acceleration } & =\frac{\text { Change in speed }}{\text { Change in time }} \\
& =\frac{100 \mathrm{~cm} / \mathrm{sec}}{0.50 \mathrm{sec}} \\
& =200 \mathrm{~cm} / \mathrm{sec}^{2}
\end{aligned}
$$

Types of Acceleration

- There are three different types of acceleration: positive, negative, and zero acceleration

Positive acceleration
(speeding up)

Negative acceleration
(slowing down)

No acceleration
(constant speed)

-Positive acceleration means the object is speeding up
-Negative acceleration means the object is slowing down
-Zero acceleration means the object is keeping the same speed

Calculating Acceleration

- Acceleration is the slope of the speed vs time graph

Homework 15

- Match each of the three distance vs time graph with the corresponding speed vs time graph.

Distance versus time graphs

Homework 21

- A swimmer speeds up from $1.9 \mathrm{~m} / \mathrm{s}$ to 2.6 m / s during the last 20 of a workout. What is the swimmer's acceleration during this time interval?

