

Chapter One: Measurement

- 1.1 Measurements
- 1.2 Time and Distance
- 1.3 Converting Measurements
- 1.4 Working with Measurements

Section 1.1 Learning Goals

- Define measurement.
- Compare English and SI measurements.
- Become familiar with metric prefixes.
- Distinguish between accuracy, precision, and resolution.

Investigation 1A

Measurement

Key Question:

Are you able to use scientific tools to make accurate measurements?

1.1 Measurements

- A measurement is a determination of the amount of something.
- A measurement has two parts:
 - a number value and
 - a unit

1.1 Two common systems

- The English System is used for everyday measurements in the United States.
- Miles, yards, feet, inches, pounds, pints, quarts, gallons, cups, and teaspoons are all English system units.
- In 1960, the Metric System was revised and simplified, and a new name was adopted— International System of Units.

1.1 International System of Measurement (SI)

- The acronym SI comes from the French name Le Système International d'Unités.
- SI units form a base-10 or decimal system.
- In the metric system, there are:
 - 10 millimeters in a centimeter,
 - 100 centimeters in a meter, and
 - 1,000 meters in a kilometer.

Common SI Units

Measurement	Unit	V alue
LENGTH		
width of pinky finger = 1 cm	meter (m) kilometer (km) decimeter (dm) centimeter (cm) millimeter (mm) micrometer (µm) nanometer (nm)	1 km = 1,000 m 1 dm = 0.1 m 1 cm = 0.01 m 1 mm = 0.001 m 1 µm = 0.000001 m 1 nm = 0.000000001 m
VOLUME		
10 drops of water = 1 mL	cubic meter (m3) cubic centimeter (cm3) liter (L) milliliter (mL)	1 cm3 = 0.000001 m3 1 L = 0.001 m3 1 mL = 0.001 L
WEIGHT		
1 large paper clip = 1 gram	kilogram (kg) gram (g) milligram (mg)	1 g = 0.001 kg 1 mg = 0.000001 kg
TEMPERATURE		
21° C = room temperature	Kelvin (K) Celsius (°C)	0°C = 273 K 100°C = 373 K

20 PB

per day

One quadrillion

bytes

in the world in

2002 = 440 PB

1.1 Accuracy, Precision and Resolution

 Accuracy is how close a measurement is to the accepted, true value.

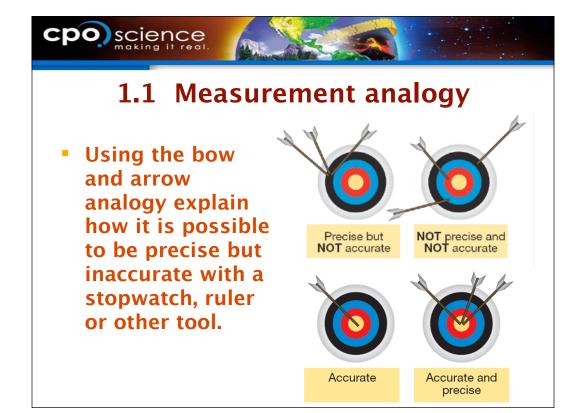
 Precision describes how close together repeated measurements or events are to one another.

Force Change in motion

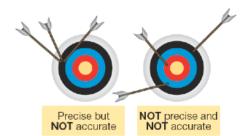
An accurate golf putt results in a hole-in-one.

Why is precision important in golf?

1.1 Resolution



High resolution


- Resolution refers to the smallest interval that can be measured.
- You can think of resolution as the "sharpness" of a measurement.

High resolution