Chapter One: Measurement - 1.1 Measurements - 1.2 Time and Distance - 1.3 Converting Measurements - 1.4 Working with Measurements

Section 1.3 Learning Goals

- Apply the decimal point rule to convert between metric quantities.
- Use dimensional analysis to convert English and SI measurements.
- Determine the number of significant digits in measurements.

cpo. science

1.3 Converting units

- To convert 1,565 pennies to the dollar amount, you divide 1,565 by 100 (since there are 100 pennies in a dollar).
- Converting SI units is just as easy as convertina nennies to dollars.
$1,565$. pennies $=15.65$ dollars
move decimal to the left 2 places

+ \mid - \mid | $\mid \div \quad$ Solving Problems
- Convert 655 mm to m

1. Looking for:

- ...the distance in meters

2. Given:

- ...distance $=655$ millimeters

3. Relationships:

- Ex. There are 1000 millimeters in 1 meter

4. Solution:

$$
655 \mathrm{~mm}=.655 \text { meters }
$$

1.3 Converting units

- A conversion factor is a ratio that has the value of one.
- This method of converting units is called dimensional analysis.
- To do the conversion you multiply 4.5 feet by
 a conversion factor.

Convert 4.5 ft to cm

1. Looking for:

You are asked for the distance in cm
2. Given:

You are given the distance in ft .
3. Relationships:

- Ex. There are ? cm in 1 ft ? $30.48 \mathrm{~cm}=1$ ft

4. Solution:

$$
4.5 \text { foot } x\left(\frac{30.48 \mathrm{~cm}}{1 \mathrm{foot}}\right)^{10}=137 \mathrm{~cm}
$$

1.3 Working with Measurements

- In the real world it is impossible for everyone to arrive at the exact same true measurement as everyone else.

Find the length of the object in centimeters.
How many digits does your answer have?

1.3 Uncertainty in measurements

- The best answer for the length of the paper clip is 2.65 cm .
- To a scientist this number means "between 2.60 and 2.70 cm ."
" The last digit, 5, representing the smallest amount, is uncertain.

1.3 Significant digits

- Significant digits are the meaningful digits in a measured quantity.
- The third digit tells someone the object is about halfway between 2.60 and 2.70 cm long.
- Therefore, we say there are three significant digits in this length measurement.

1.3 Which digits are significant?

Digits that are always significant:

1. Non-zero digits.
2. Zeroes between two significant digits.
3. All final zeroes to the right of a decimal point.

Digits that are never significant:

1. Leading zeroes to the right of a decimal point. (0.002 cm has only one significant digit.)
2. Final zeroes in a number that does not have a decimal point.

Section 1.4 Learning Goals

- Use graphs to create a visual representation of data.
- Analyze trends on a graph.
- Explain the difference between a direct relationship and an inverse relationship.

1.4 Measurement and Graphing

- A graph is a visual way to organize data.
- A scatterplot or XY graph is used to see if two variables are related.

Mass and Volume of Hex Nuts

1.4 Measurement and Graphing

B. Bar Graph

- A bar graph compares data grouped by a name or category.

1.4 Measurement and Graphing

- A "connect-the-dots" line graph is often used to show trends in data over time.
D. Line Graph

CpO. science

1.4 Making a scatterplot or XY

- Scatterplots show how a change in one variable influences another variable.
- The independent variable is the variable you believe might influence another variable.
- The dependent variable is the variable that you hope will change as a result of the experiment.

1.4 Making a scatterplot or XY

- Pressure is critical to safe diving.
- How does an increase in depth affect the pressure?
- What sort of graph would best show the relationship between pressure and depth?

1.4 Making a scatterplot or XY

1. Choose x and y-axis

- Depth is the independent variable $=x$ axis
- Pressure is the dependent variable $=y$ axis

2. Make a scale

- Calculate the value per box
- Most graphs use ones, twos, fives or tens

3. Plot your data
4. Create a title

* Exception- when time is a variable

Making a Scatterplot or XY Graph

cpo. science

1.4 MIXES TUCS

- M: maximize your graph
- IX: Independent variable on x-axis
- ES: Equally spaced scale increments
- T: Title (includes axis names)
- U: Units and labels on both axes
- CS: Continuous smooth curve connects data

1.4 Identifying graph relationships

- In a direct relationship, when one variable increases, so does the other.

Strong Relationship Between Variables

The distance and speed variables show a direct relationship.

1.4 Identifying graph relationships

- In an
inverse relationship, when one variable increases, the other decreases.

TECHNOLOGY \geqslant CONNECTION

Nanotechnology

- What if biological nanomachines could seek out a broken part of a cell and fix it? How can a nanomachine mimic
 nature's ability to heal?
- These are the cutting-edge questions that nanomedicine scientists are trying to answer.

