LESSON 9.3

GOAL Solve quadratic equations by graphing.

Vocabulary

A quadratic equation is an equation that can be written in the standard form $ax^2 + bx + c = 0$ where $a \neq 0$ and *a* is called the **leading coefficient.**

Common Student Errors

• Thinking the y-intercept is also a solution

Tip Stress that only the *x*-intercepts of a graph of a quadratic function are solutions to the related quadratic equation. Have students check their solutions by substituting into the original equation or using factoring to solve the equation.

Example: Solve $x^2 + x - 30 = 0$.

Student solution: -6, 5, -30

EXAMPLE 1 Solve a quadratic equation having two solutions

Solve $x^2 + 5x = 14$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$x^2 + 5x = 14$	Write original equation.	
$x^2 + 5x - 14 = 0$	Subtract 14 from each side.	

STEP 2 Graph the function $y = x^2 + 5x - 14$. The *x*-intercepts are -7 and 2.

The solutions of the equation $x^2 + 5x = 14$ are -7 and 2.

CHECK You can check -7 and 2 in the original equation. $x^2 + 5x = 14$ $x^2 + 5x = 14$ Write original equation. $(-7)^2 + 5(-7) \stackrel{?}{=} 14$ $(2)^2 + 5(2) \stackrel{?}{=} 14$ Substitute for x. $14 = 14 \checkmark$ $14 = 14 \checkmark$ Simplify. Each solution checks.

EXAMPLE 2 Solve a quadratic equation having one solution

Solve $x^2 + 25 = 10x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

 $x^{2}+25 = 10x$ Write original equation. $x^{2}-10x+25 = 0$ Subtract 10x from each side.

STEP 2 Graph the function $y = x^2 - 10x + 25$.

The *x*-intercept is 5.

The solution of the equation $x^2 + 25 = 10x$ is 5.

	y)	11		1	
	10				
	- 6-				
			+ $+$ $+$		
	- 2-	<u>'</u>		x = 5_	
-	_				
	,	2	6	10	X

EXAMPLE 3 Solve a quadratic equation having no solution

Solve $x^2 + 11 = 5x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

 $x^{2} + 11 = 5x$ Write original equation. $x^{2} - 5x + 11 = 0$ Subtract 5x from each side.

STEP 2 Graph the function $y = x^2 - 5x + 11$.

The graph has no *x*-intercepts.

The equation $x^2 + 11 = 5x$ has no solution.

Exercises for Examples 1, 2, and 3

Solve the equation by graphing. 1. $x^2 = 2x + 15$ **2.** $x^2 + 4 = -4x$ **3.** $x^2 + 6x = -4$

EXAMPLE 4 Find the zeros of a quadratic function

Find the zeros of $f(x) = x^2 - 10x + 24$.

Solution

Graph the function $f(x) = x^2 - 10x + 24$. The *x*-intercepts are 4 and 6. The zeros of the function are 4 and 6.

Exercises for Example 4

Find the zeros of the function.

4.
$$f(x) = x^2 - 4$$

5. $f(x) = x^2 + 5x - 14$