LESSON 9.3

GOAL
Solve quadratic equations by graphing.
Vocabulary
A quadratic equation is an equation that can be written in the standard form $a x^{2}+b x+c=0$ where $a \neq 0$ and a is called the leading coefficient.

Common Student Errors

- Thinking the y-intercept is also a solution

Tip Stress that only the x-intercepts of a graph of a quadratic function are solutions to the related quadratic equation. Have students check their solutions by substituting into the original equation or using factoring to solve the equation.

Example: Solve $x^{2}+x-30=0$.
Student solution: $-6,5,-30$

EXAMPLE 1
Solve a quadratic equation having two solutions
Solve $x^{2}+5 x=14$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}+5 x=14 & \text { Write original equation. } \\
x^{2}+5 x-14=0 & \text { Subtract } 14 \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}+5 x-14$.
The x-intercepts are -7 and 2 .
The solutions of the equation $x^{2}+5 x=14$ are -7 and 2 .

CHECK You can check -7 and 2 in the original equation.

$$
\begin{array}{rlrlrl}
x^{2}+5 x & =14 & x^{2}+5 x & =14 & & \text { Write original equation. } \\
(-7)^{2}+5(-7) \stackrel{?}{=} 14 & (2)^{2}+5(2) \stackrel{?}{=} 14 & & \text { Substitute for } x . \\
14 & =14 \checkmark & 14 & =14 \checkmark & & \text { Simplify. Each solution checks. }
\end{array}
$$

EXAMPLE 2

Solve a quadratic equation having one solution
Solve $x^{2}+25=10 x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}+25 & =10 x & & \text { Write original equation. } \\
x^{2}-10 x+25 & =0 & & \text { Subtract } 10 x \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}-10 x+25$.
The x-intercept is 5 .
The solution of the equation $x^{2}+25=10 x$ is 5 .

EXAMPLE 3

Solve a quadratic equation having no solution

Solve $x^{2}+11=5 x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}+11 & =5 x & & \text { Write original equation. } \\
x^{2}-5 x+11 & =0 & & \text { Subtract } 5 x \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}-5 x+11$.
The graph has no x-intercepts.
The equation $x^{2}+11=5 x$ has no solution.

Exercises for Examples 1,2, and 3

Solve the equation by graphing.

1. $x^{2}=2 x+15$
2. $x^{2}+4=-4 x$
3. $x^{2}+6 x=-4$

EXAMPLE 4
Find the zeros of a quadratic function
Find the zeros of $f(x)=x^{2}-10 x+24$.
Solution
Graph the function $f(x)=x^{2}-10 x+24$.
The x-intercepts are 4 and 6 .
The zeros of the function are 4 and 6 .

Exercises for Example 4

Find the zeros of the function.
4. $f(x)=x^{2}-4$
5. $f(x)=x^{2}+5 x-14$

