

# **Chapter Twenty: Earthquakes and Volcanoes**

- 20.1 Earthquakes
- 20.2 Volcanoes
- 20.3 Igneous Rocks



## **20.2 Learning Goals**

- Identify locations where volcanoes are most likely to form.
- Explain the factors involved in volcanic eruptions.
- Evaluate the features of different types of volcanoes.



## **Investigation 20B**

## Volcanoes

## • Key Question:

How are volcanoes and plate boundaries related?

Table I: Examples of volcanoes and VEI ratings

| VEI | Plume<br>height | Volume (m³)              | Average time interval<br>between eruptions | Example                |
|-----|-----------------|--------------------------|--------------------------------------------|------------------------|
| 0   | <100 m          | ≥ 1000                   | one day                                    | Kilauea                |
| 1   | 100-1000 m      | ≥10,000                  | one day                                    | Stromboli              |
| 2   | 1-5 km          | ≥1,000,000               | one week                                   | Galeras, 1992          |
| 3   | 3-15 km         | ≥10,000,000              | one year                                   | Ruiz, 1985             |
| 4   | 10-25 km        | ≥100,000,000             | ≥10 years                                  | Galunggung, 1982       |
| 5   | > 25 km         | $\geq 1,000,000,000$     | ≥100 years                                 | Mount St. Helens, 1981 |
| 6   | > 25 km         | ≥10,000,000,000          | ≥100 years                                 | Krakatoa, 1883         |
| 7   | > 25 km         | ≥100,000,000,000         | ≥1,000 years                               | Tambora, 1815          |
| 8   | > 25 km         | $\geq 1,000,000,000,000$ | ≥10,000 years                              | Toba, 71,000 years ago |



## 20.2 Where you find volcanoes

- A volcano is a site where melted rock and other materials from Earth's mantle are released.
- Mount St. Helens is a type of volcano called a composite volcano (also known as a stratovolcano).

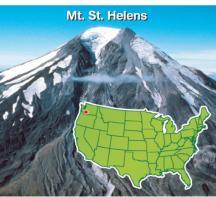



Photo courtesy of USGS



## 20.2 Where you find volcanoes

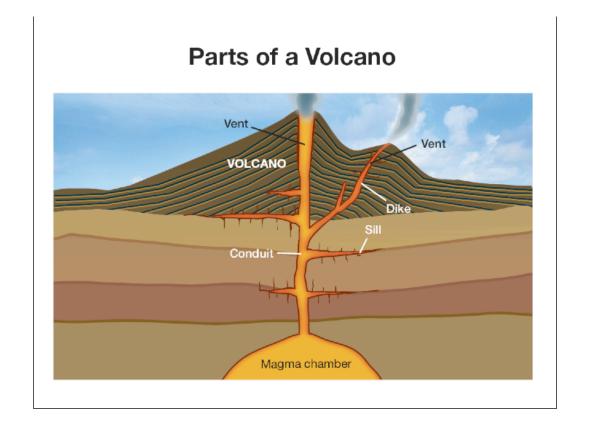
- About half of the active surface volcanoes on Earth occur along the shores of the Pacific Ocean.
- This region is called the "Ring of Fire."

### What is the Ring of Fire?





## **20.2** Where you find volcanoes


- The Ring of Fire is found where the oceanic crust of the Pacific Plate is subducting under nearby plates.
- Most volcanoes are located along plate boundaries.
- Volcanoes, like those in Hawaii are also present along divergent boundaries and within plates.



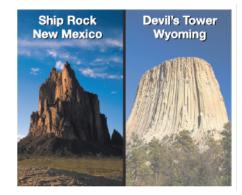


### 20.2 What is a volcano?

- During an eruption, melted rock called magma leaves the magma chamber and moves up the conduit.
  The magma leaves the conduit at the vent.
- Magma is called lava <u>after</u> it leaves the vent.



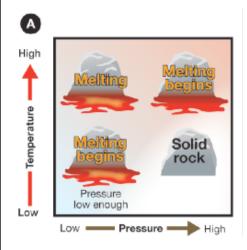



### 20.2 The life of a volcano

- An active volcano is the most vigorous kind of volcano.
- Active volcanoes are erupting or have erupted recently, and are expected to erupt again in the near future.
- A dormant volcano is a quiet volcano.
- Dormant volcanoes are not active now, but may become active again in the future.



## 20.2 The life of a volcano

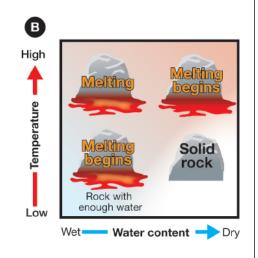

Devil's Tower and Ship Rock are examples of extinct volcanic "necks."



As the volcano erodes, a core of solid magma gets exposed by erosion.



## 20.2 What makes magma?



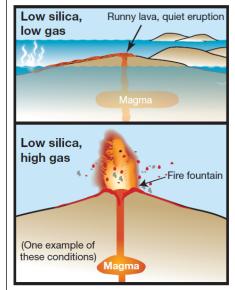

- There are two ways to make rock melt.
- One way is to reduce the pressure.



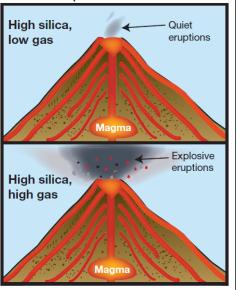
## 20.2 What makes magma?

- The other way is to mix water with the hot rock.
- The conditions needed to melt rock are very special and exist inside our planet.






## **20.2 Volcanoes vary**


- The shapes of volcanoes depend on the composition of the magma that formed them.
- Volcanoes can look like wide, flat mounds (shield volcanoes), like tall cones (composite volcanoes), or like a heap of rock bits (cinder cones).

## **Types of Volcanoes**

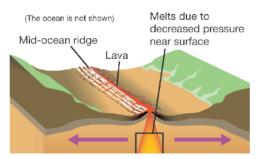
#### **Shield Volcanoes**



#### **Composite Volcanoes**

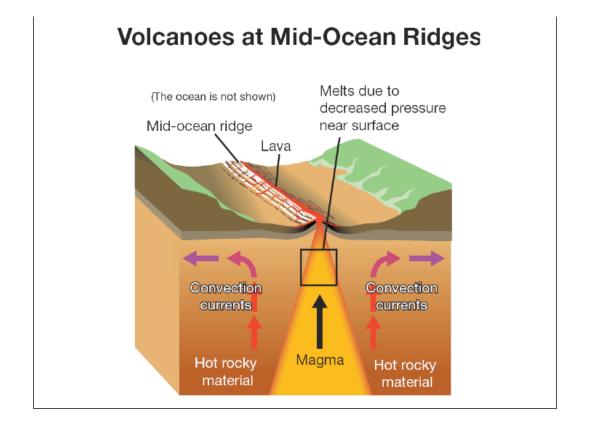





## **20.2 Volcanoes vary**

 The quantity of dissolved gases affects how explosive the eruption will be.

|                        |             | Low Gas                                                        | High Gas                                                |
|------------------------|-------------|----------------------------------------------------------------|---------------------------------------------------------|
| Shield<br>Volcanoes    | Low Silica  | Runny magma, like ketchup<br>Quiet eruption, lava flows easily | Runny magma, bubbly<br>Fire fountain, lava flows easily |
| Composite<br>Volcanoes | High Silica | Thick, sticky magma, like taffy Quiet eruption                 | Thick, sticky magma<br>Explosive eruption               |




## 20.2 Volcanoes at divergent boundaries



Can you name an oceanic ridge formed at diverging plates?

- Mid-ocean ridges occur underwater at diverging plate boundaries.
- When lava oozes out at a mid-ocean ridge, it immediately hits cold seawater, forming a crust.





## 20.2 Volcanoes at divergent boundaries

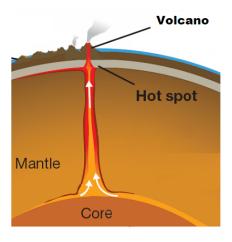
- On land, basaltic lava flows like spilled syrup.
- Underwater, oozing lava hits cold and air fills a solid lava sk seawater in like a balloon.
- When geologists find pillow lava on land, they know that there was once a midocean ridge nearby.







## 20.2 Volcanoes at divergent boundaries

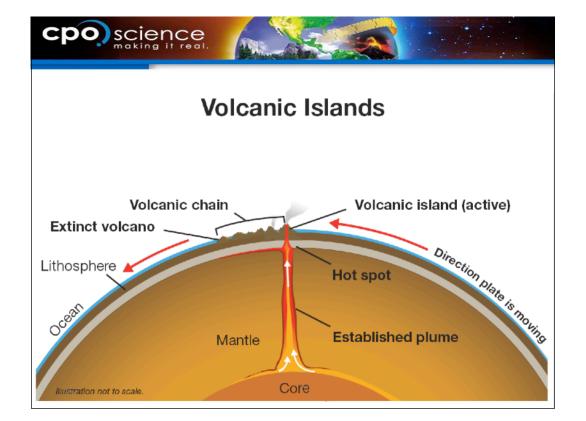

- Iceland is separating along the Mid-Atlantic Ridge.
- Similarly, Ethiopia is the site of the East African Rift zone.



Due to the separation of plates at these locations, each is intensely volcanic.



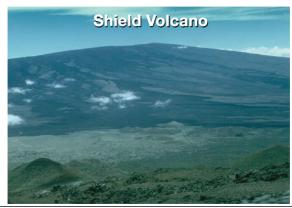
# 20.2 Volcanic islands chains and mantle plumes

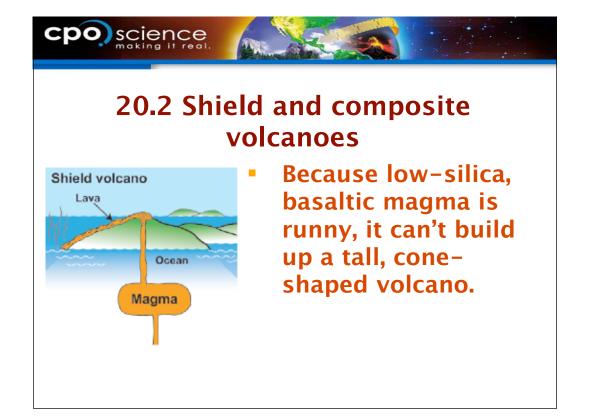



- Volcanic islands form when mantle plumes bring material from deep within the lower mantle under an ocean.
- The top of an active mantle plume is called a hot spot.



### 20.2 Volcanic chains


- 1. As the plate moves, it carries the volcanic island away from the active hot spot.
- 2. Without the hot spot to supply magma, the volcano becomes extinct.
- 3. The hot spot begins to form a new volcano beside the old one.
- 4. The result is a volcanic island chain.






# 20.2 Shield and composite volcanoes

Low silica magma produces a shield volcano.



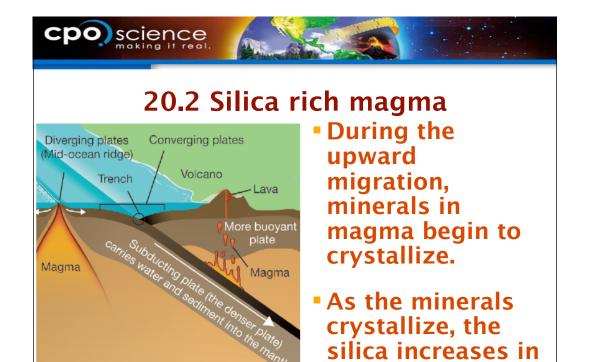




# 12.2 Volcanoes with low silica magma

- When low silica magma has high levels of dissolved gas, gas bubbles out as it reaches the volcano vent.
- The effect is identical to shaking a soda bottle to produce a shower of soda.




High-gas magma produces a spectacular fire fountain.



## 20.2 Shield and composite volcanoes



A tall cone, or composite volcano is a tall cone formed by layers of lava and ash.



concentration.



## 20.2 Silica rich magma

 Compare and contrast shield and composite volcanoes using the data below:

|                                                          | Shield volcanoes          | Composite volcanoes                                    |
|----------------------------------------------------------|---------------------------|--------------------------------------------------------|
| Volcano shape                                            | Flattened, gradual slopes | Tall, steep slopes                                     |
| Silica concentration                                     | Silica poor               | Silica rich                                            |
| Magma source                                             | Mantle                    | Mantle (and melted subducted ocean crust and sediment) |
| Distance from magma source to volcano on Earth's surface |                           | Long                                                   |



## 20.2 Dissolved gas and cinder cones

 If silica-rich magma contains high levels of dissolved gas, pressure usually builds inside a volcano.





## 20.2 Dissolved gas and cinder cones

- The lava bits filled with gas bubbles break apart as the dissolved gas expands.
- The gas-filled fragments cool to produce pumice and ash.







## **20.2 Cinder cones**

- A cinder cone, a third type of volcano, is <u>not</u> the result of flowing lava.
- Imagine a volcano that ejects a lot of gas with only small bits of lava.

