

Chapter Three: Mapping Earth

- **3.1** Position, Coordinates, and Maps
- **3.2 Topographic Maps**
- 3.3 Bathymetric Maps

Section 3.1 Learning Goals

- Describe an object's position relative to a reference point.
- Distinguish between lines of longitude and latitude.
- Analyze a map to determine scale, direction, and specific location.

Investigation 3A

Positive and Negative Position

Key Question:

How do we measure position in two dimensions?

3.1 The position variable

- Motion is about knowing where things are and how they move.
- To understand where things are, we need to understand position.

3.1 The position variable

 Position is a variable and it is always relative to an *origin*, or the place where the object's starting point was zero.

> Where is the car if it moves 20 cm to the left?

3.1 Forward and backward

- Position and distance are similar but not the same.
- Both use units of length.
- Distance can be zero or have positive values.

3.1 Forward and backward

- Position uses positive and negative numbers.
- Positive numbers are for positions to the right (in front) of the origin.
- Negative numbers are for positions to the left (or behind) the origin.

3.1 Vectors

- Position is an example of a kind of variable called a vector.
 - A vector is a variable that tells you a direction as well as an amount.

Velocity is an example of a vector quantity. It includes <u>both</u> speed and direction.

3.1 Keeping track of where you are

 Sojourner is a small robotic rover sent to explore Mars on the Pathfinder mission.

 Sojourner explores ancient floodplains of Mars.

Where is Sojourner now?

3.1 Keeping track of where you are

- As it moved, Sojourner needed to keep track of its position.
- The robot used speed and time data to calculate the position vector, and then added up position vectors to come up with a final position.

3.1 Maps and coordinates

- If Sojourner was crawling on a straight board, it would have only two choices for direction, forward and reverse.
- Out on the surface of Mars, Sojourner has more choices. The possible directions include north, east, south, and west, and anything in between.

3.1 Maps and coordinates

- Sojourner's exact position can be described with two numbers.
- These numbers are called coordinates.

This graph shows Sojourner at coordinates (+4, +2) m.

3.1 Maps and coordinates

- A graph can also show any path
 Sojourner takes, curved or straight.
- This kind of graph is called a map.
- Street maps often use letters and numbers for coordinates.

3.1 Globe

• A globe is a model of Earth.

3.1 Making globes

You can cut a flat paper map to form it into a hemisphere for a globe.

3.1 The equator

- The equator is an imaginary line around Earth's middle that lies between the north and south poles.
- The equator is at 0° latitude.

3.1 Latitude

- Latitude lines are the horizontal lines on a map.
- They are lines that run east to west above and below the equator.
- Some latitude lines have special names.

Name of Latitude Line	Approximate Location
Arctic Circle	66.5° N
Tropic of Cancer	23.5° N
Tropic of Capricorn	23.5° S
Antarctic Circle	66.5° S

3.1 Latitude

 Each line of latitude represents one degree on Earth's surface.

 Each degree is divided into 60 minutes and each minute is divided into 60 seconds.

3.1 Latitude

 Minutes and seconds on maps represent distances, not time!

Can you name of these globe positions?

3.1 Longitude

- Longitude lines (or meridians) run north to south on a globe.
- The prime meridian, is an imaginary line that goes through Greenwich, England.
- The prime meridian is the 0° line of longitude.

Longitude lines meet at the poles.

3.1 Longitude

- The international dateline is an imaginary longitude line located mainly at 180°.
- For every 15° of longitude past the international dateline, time changes by one hour.

Latitude and Longitude

3.1 Projections

- Imagine trying to flatten a globe to make a map for traveling.
- A Mercator projection converts the center (most useful) section of the globe.
- Near the poles, the landforms are distorted on a flat map.
- Greenland and Antarctica appear much larger on maps than on globes.

3.1 Projections

On maps, there is usually a symbol that indicates *direction*—north, south, east, and west.

Maps usually have a *legend* that lists and explains the symbols that are used on the map.

Map Legend

Topographic contour	6000
Campground	
Railroad track	
School	
Many buildings	

Here are three kinds of map scales.

Types of map scales				
Fractional 1/100,000	Verbal 1 cm = 1 km	Bar 0 1 2 3 4 5 kilometers		

Can you suggest a use for each type of scale?

 A legend on a road map might include special lines to indicate different kinds of roads or the locations of parks, airports, and hospitals.

Can you locate all of the features of this map?

