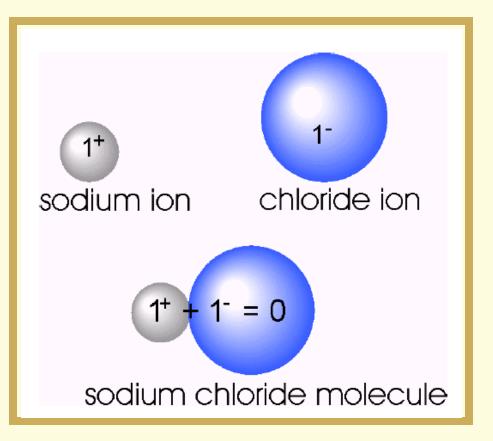
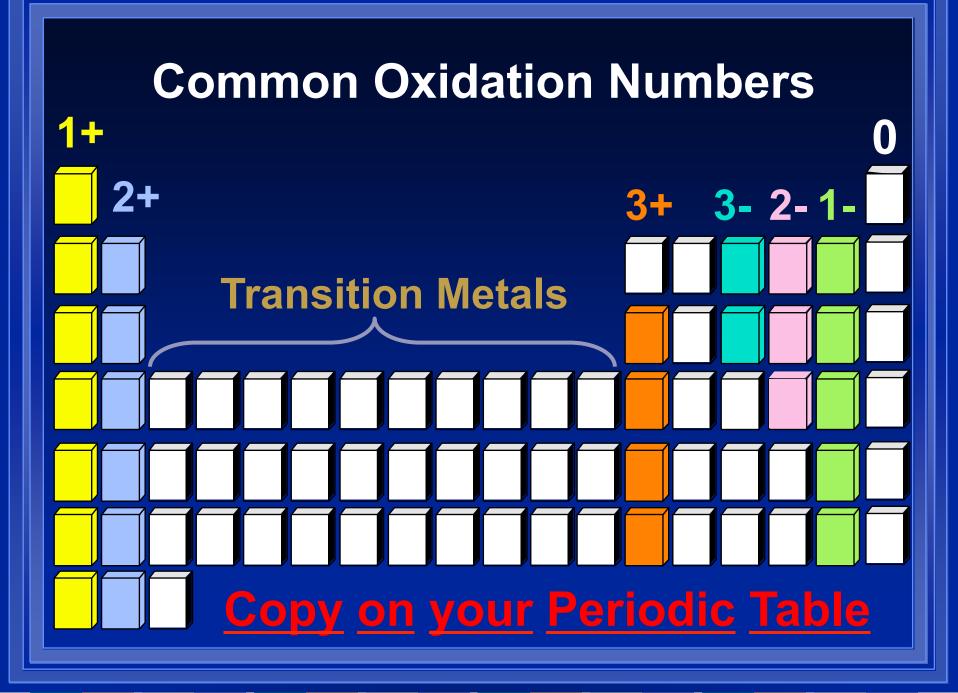
Chapter 19: Molecules and Compounds Section 19.2 **Chemical Formulas**


Chemical Formula:

- Ratio of atoms bonded together in a compound, i.e. X:Y
- General Form: <u>AxBy</u> where x and y are called subscripts.

Recall NaCl (sodium chloride)... Formula shows that atoms combine in a **1:1 ratio.** • $Na_1Cl_1 = 1:1$ Why in that ratio?


To be stable...

the net electrical charge of compounds must be zero.

Oxidation Number: Indicates how many valence e⁻ are lost, gained, or shared when bonding.

(+) or (-) symbol is written after the number, i.e. 1+ or 2-

Transition metals have more than one oxidation #. Roman numerals show oxidation #.

element	oxidation number
copper (I)	Cu^+
copper (II)	Cu ²⁺
iron (II)	Fe ²⁺
iron (III)	Fe ³⁺
chromium (II)	Cr^{2+}
chromium (III)	Cr ³⁺
lead (II)	Pb ²⁺
lead (IV)	Pb ⁴⁺

Writing Chemical Formulas monatomic ions 1. Symbol of (+) ion always written 1st.

2. Symbol of (–) ion always written 2nd.

3. Add subscripts so sum of oxidation #'s is zero.

Example: Write formula for binary (2 element) compound made of iron(III) and oxygen.

1. Find oxidation #'s of elements: iron(III) **Fe³⁺** 02oxygen How do you make a cmpd electrically neutral?

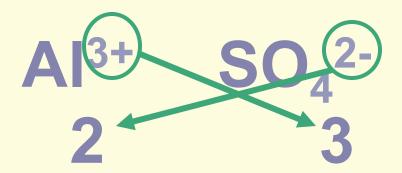
Calculate Fe³⁺ ions needed to combine with O²⁻ ions to make electrical charges equal zero. 2 (Fe³⁺) added to 3 (O²⁻) = 0 2(3+) added to 3(2-) = 0

2. To determine ratios to write chemical formulas...Use the <u>Criss-cross Method</u>

3+ 2-Fe Fe2U3

Writing Chemical Formulas with polyatomic ions "poly" means many. See page 329: Oxidation **#'s for polyatomic ions.** Each polyatomic ion is treated like a single ion.

Rules for writing formulas for cmpds with polyatomic ions: Symbol or formula & oxidation # of (+) ion 1st. Use PT or Table 19.2, pg 329. Symbol or formula & oxidation # of (-) ion 2nd. Again, use PT or Table 19.2.


Add oxidation #'s of (+) and (-) ions. If yes, then write formula: (+)ion $1^{st}/(-)$ ion 2^{nd} . # 40? How many of each ion are needed so oxidation #'s = 0? HINT: Find LCM L_{east}C_{ommon}M_{ultiple}

Example: Write formula for aluminum sulfate. 1st ion is always (+). Use **PT to find oxidation #.** Al3+ •Aluminum = AI^{3+} 2nd ion is always (-). Use **Table 19.2**. SO_4^2 Sulfate = SO⁴²⁻

LCM of 2 and 3? 6 How many of each ion are needed? • $(AI^{3+}) \times 2 = 6+ \\ (SO_4^{2-}) \times 3 = 6- \end{bmatrix}^0$

 $Al^{3+} Al^{3+} SO_{4}^{2-} OSO_{4}^{2-} O$

Write chemical formula $\bullet Al_2(SO_4)_3$ •Don't change subscripts in polyatomic ion!! Use () Criss-cross method

Naming binary ionic compounds Write name of 1st element or polyatomic ion. Write root name of 2nd element and add -ide. •Exs: chlor-ine = chlor-ide phosph-orus = phosph-ide

Naming ionic cmpds with polyatomic ions Write name of (+) ion 1st. **Use PT or Table 19.2** Write name of (-) ion 2nd. **Use PT or Table 19.2**

Naming binary covalent compounds Specify number of each element by using prefixes (Figure 19.25, pg 332). If only one atom of 1st element, don't use mono-

Examples:

- CO carbon monoxide
- CO₂ carbon dioxide
- PCl₅ phosphorus
 - pentachloride
- N₂S₆ dinitrogen hexasulfide

Empirical vs Molecular formulas Empirical formula – simplest whole number ratio of elements in cmpd. Molecular formula – actual # of atoms of each element in a compound.

Example: Molecular formula -sugar $C_{6}H_{12}O_{6}$ Empirical formula -sugar CH₂O