Chapter 19: Molecules and Compounds

Section 19.3
Comparing
Molecules

COMPARING DIFFERENT MOLECULES

 How does the mass of different molecules compare?

Do you think that a molecule of water has the same mass as a molecule of calcium carbonate?

Recall atomic mass units (amu)...

- Atoms are assigned a relative mass based on carbon as the standard.
 - Known as atomic mass unit

Figure 19.28: One hydrogen atom is 1/12th the mass of one carbon atom.

Chemical formula gives 3 pieces of info:

- -types / numbers of atoms.
- -if polyatomic ions are present.
- allows calculation of mass of 1 molecule of a compound relative to mass of other compounds.

Formula Mass

- Way to compare masses of molecules of different compounds.
 - Calculate by adding up atomic masses of all atoms in a compound.

Example: Figuring Formula Mass

- H₂O means 2H and 1O
- 2 (1.01 amu) = 2.02
- +1 (16.00 amu) = 16.00
- •Formula mass = 18.02 amu of H₂O

An amu is very small, so to be usable in measurements, we equate the <u>number</u> value of the formula mass in amu to an equal amount in grams.

Avogadro's Number

- The formula mass in grams of any element or compound contains 6.02 x 10²³ atoms or molecules.
- Known as Avogadro's #
 or a "mole" of the
 substance.

Calculate the formula mass of calcium carbonate.

1. Write formula

calcium: Ca²⁺ carbonate: CO₃²⁻

chemical formula: CaCO3

2. List number of atoms and atomic mass of each: CaCO₃

$$-1$$
 Ca = 1(40.08) = 40.08

$$11 \text{ C} = 1(12.01) = 12.01$$

$$30 = 3(16.00) = 48.00$$

3. Add up values to calculate formula mass

40.08 12.01 + 48.00 100.09 amu for CaCO₃

So, how do we use this value?

- If you measure out 100.09 grams of CaCO₃, you have 6.02 x 10²³ molecules of CaCO₃.
- Likewise, 18.02 g of H₂O contains 6.02 x 10²³ molecules of water.

Hydrates (BaCl₂• 2H₂O)

- Some molecules contain precise numbers of H₂O molecules chemically bonded to their ions.
- Called <u>hydrates</u>.
- Can remove H₂O by heating.

When H₂O is gone, the compound is known as <u>anhydrous</u> (BaCl₂).

 To calculate formula mass, simply add the mass of the attached H₂O molecules to that of the anhydrous mass.

Examplez Backatha

$$\cdot$$
 2 CI = 2(35.45) = 70.90

$$•4H = 4(1.01) = 4.04$$

$$-20 = 2(16.00) = 32.00$$

Formula mass = 244.24 amu